Black Hole Information Loss Paradox

Accelerating Plasma Mirrors to Investor

Pisin Chen

Department of Physics and Graduate Institute of Astrophysics & Leung Center for Cosmology and Particle Astrophysics (LeCosPA) National Taiwan University & Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) Stanford University

RQI-N, YITP, July 4-7, 2017

Black hole Hawking evaporation – Connecting GR, QM, SM in one stroke

Hawking evaporation may result in the loss of information!

- First pointed out by Hawking himself in 1976
- Endless debates ever since
- Solutions include "black hole complementarity" (Susskind et al.), Firewall (AMPS, AMPSS), etc.
- Entanglement between Hawking radiation and partner particles Wilczek 1987, Schutzhold-Unruh 2010, Hotta-Schutzhold-Unruh (2015)
- Planck size black hole remnants (Chen-Ong-Yeom, Phys. Rep.2015)
- Naked black hole firewalls (Chen-Ong-Page-Sasaki-Yeom, PRL 2016)
- BMS Soft Hairs (Hawking-Perry-Strominger, 2016)
- No firewalls & nothing wrong w. information loss (Unruh-Wald 2017)
- An alternative hairdo based on Kac-Moody symmetry (Addazi-Chen-Marciano-Wu, 2017)
 ³

Quantum entanglement

Schrödinger: *"Verschrankung"* (1935) as a result of discussing with Einstein

"Quantum entanglement is not just a property of QM, it is THE character of QM. It fundamentally breaks QM from classical physics." (E. Schrodedinger)

Monogamy of quantum entanglement

When would BH information come out?

 $S(B) = \log m$ $S(B \mid A) = \sum_{k=n+1}^{mn} \frac{1}{k} - \frac{m-1}{2n}$

(For a pure and random system, Conjectured by Page, 1993; proved by Sen, 1996.)

If $S(A) \propto Area$, then the

information will come out when the black hole initial area decreases to half value. This is called the Page time. In 2012, four physicists (AMPS) argued that the 3 basic assumptions that led to the BH complementarity principle, namely,

- 1. Unitarity
- 2. Local quantum field theory
- 3. No drama

cannot be all consistent. They suggested that the "most conservative" solution would be that there exists a firewall on the BH surface, anything falls into BH would be burned into ashes.

AMPS black hole firewall

Problem

Solution: Firewall

The intensity of a quantum field is Determined by the rate of change of the field

- Ahmed Almheiri, Donald Marolf, Joseph Polchinski, James Sully, "Black Holes: Complementarity or Firewalls?",
- Ahmed Almheiri, Donald Marolf, Joseph Polchinski, Douglas Stanford, James Sully, "An Apologia for Firewalls",

For disconnected spacetimes, the magnitudes of the quantum field need not be continuous.

Complementarity

An astronaut falling into a black hole crosses the event horizon without incident, satisfying a prediction of general relativity. The astronaut continues floating along until, approaching the black hole's center, he is spaghettified.

Event horizon Firewall

Firewall

A wall of radiation incinerates the

unlucky astronaut and blocks entry into the black hole. Information is

preserved in this scenario (you can

astronaut from his ashes), but gen-

theoretically piece together the

eral relativity is violated.

General relativity: For a sufficiently large BH, whose curvature is small, objects should pass its horizon uneventfully - "No Drama"

AMPS firewall:

The requirement that Hawking radiation can bring information out from BH would result in the notion of firewall.

Yukawa Institute of Theoretical Physics, Kyoto University

The five authors of the paper with another colleague during the discussion at the Yukawa Institute for Theoretical Physics: (L to R) Dong-han Yeom, Yen Chin Ong, Pisin Chen, Don Page, Yasusada Nambu, and Misao Sasaki.

Chen-Ong-Page-Sasaki-Yeom: Why should firewalls be naked?

Phys. Rev. Lett. 116, 161304 (2016)

- Quantum fluctuations in Hawking radiation inevitable
- BH's backreaction to the quantum fluctuations leads to the exposure of the event horizon.
- Curvature of stellar-size BHs small, so GR should be satisfied
- Firewalls conjecture is not a conservative solution to the information paradox

Kyoto Ginkakuji Temple

MANE

Kyoto Philosopher Path

Investigations of ILP mostly theoretical Astro black holes too cold and too young

> Lifetime of solar mass BH: 10⁶⁷ years Age of the universe: 1.38 x 10¹⁰ years

Analog Black Holes

- Sound waves in moving fluids "dumb holes" Unruh (1981, 1995)
- Traveling index of refraction in media Yablonovitch (1989)
- Violent acceleration of electron by lasers Chen-Tajima (1999)
- Electromagnetic waveguides Schutzhold-Unruh (2005)
- Bose-Einstein condensate Steinhauer (2014)
- Accelerating mirror

Fulling-Davies (1976), Davies-Fulling-Unruh (1977), Birrell-Davies (1982), Carlitz-Willey (1987), Hotta-Schutzhold-Unruh (2015), Chen-Mourou (2016), Chen-Yeom (2017)

Testing thermal nature of Hawking radiation

Accelerating mirror as an analog black hole

SIMULATING A BLACK HOLE ON A TABLE

New black hole simulator may shed more light on a contradiction in fundamental physics

Black hole Hawking evaporation

Why is there a radiation?

 Hawking radiation is theoretically estimated by using the Bogoliubov transformation.

 $\langle n_{\omega} \rangle = \langle b_{\omega}^{\dagger} b_{\omega} \rangle = \sum_{\omega'} \left| \beta_{\omega\omega'} \right|^2$

 A non-trivial Bogoliubov transformation is possible due to the red-shift of incoming modes by the horizon of a black hole.

Blue-shifted by a factor $v \sim e^{\kappa u}$

 $\{a,a^{\dagger}\}$

 b,b^{\dagger}

 $\{c,c^{\dagger}\}$

ω

trace back

 \mathcal{V}_0

$$p_{\omega} \sim e^{i\omega\kappa^{-1}\ln\left[(v_0-v)/c\right]} \quad (v > v_0)$$
$$= \sum_{\omega'} \left[\alpha_{\omega\omega'}f_{\omega'} + \beta_{\omega\omega'}f_{\omega'}^*\right]$$

Red-shift by a mirror

- A moving mirror is a surface that satisfies a reflecting boundary condition.
- If the mirror is moving with a constant acceleration, then it generates a thermal radiation.

• One can calculate the **out-going energy flux** as a function of the mirror trajectory (for 2D spacetime).

Is there information loss?

- Definitely, there should be no information loss in the mirror dynamics.
- Then what can we learn from the **entanglement entropy**?

Entanglement entropy

$$S^{\epsilon}_{|0_+\rangle}(A) = \frac{c}{12} \log \frac{(u-u_0)^2}{\epsilon^2}$$

- In order to apply Page's argument, one can calculate the entanglement entropy as a function of u.
- In order to obtain a finite result, we need a **renormalization** of the cutoff.

Entanglement entropy formula

- After a proper renormalization, we obtain the formula (Holzhey, Larsen and Wilczek, 1994; Bianchi and Smerlak, 2014).
- Several authors have tested the consistency of this paper, e.g., Abdolrahimi and Page, 2015.

Mirror trajectories

P Chen, D-h Yeom, "Entropy evolution of moving mirrors and the information loss problem", arXiv:1704.08613 (Accepted for publication PRD)

• Using this formula, we can test several candidate trajectories.

$$\frac{dS(t)}{dt} = A \sin^2 \pi \frac{t}{t_{\rm P}} \qquad 0 \le t < t_{\rm P},$$
$$= -A \frac{t_{\rm P}}{t_{\rm f} - t_{\rm P}} \sin^2 \pi \frac{t - t_{\rm P}}{t_{\rm f} - t_{\rm P}} \qquad t_{\rm P} \le t < t_{\rm f},$$

– Suddenly stopping mirror: $t_f = 15$,

– Slowly stopping mirror: $t_{\rm f} = 20$,

– Long propagating mirror: $t_{\rm f} = 50$.

Test of scenarios

 For a suddenly stopping mirror, there is a large amount of energy emission. In general it is too large and hence it cannot mimic the last burst of a black hole.

Test of scenarios

- For a mirror with very long lifetime, the emitted energy can be arbitrarily small.
- This mimics the possibility of correlation between vacuum and radiation or the remnant scenario.

Complementarity vs. Firewall

Consistency test: AMPS thought experiments

- Due to the monogamy of entanglements, there should be an effect that breaks one link.
- For a black hole case, this is called by (hypothetical) the **firewall**.
- There should be a violent effect from a mirror: a firewall-like emission?

Flying Mirror: Entanglement between Hawking & partner particles Final outburst of energy or not?

Plasma Wakefield Acceleration

Tajima-Dawson (1979)- Laser driven (LWFA)

Chen-Dawson-Huff-Katsouleas (1985) - Particle beam driven (PWFA)

SLAC & LBL- Acceleration of O(100) GeV/m observed!

Plasma Wake is like a tsunami

Relativistic Plasma Mirror

n/n cr 0.8 0.6 2 0.4 ZIλ 0.2 C \sim 010 0 75

Reflected laser pulse Lorentz-boosted and tighter-focused.

Laser and plasma wakefield speed up as plasma density gradually increases

An accelerating plasma mirror

P Chen, G Mourou, "Accelerating plasma mirrors to investigate black hole information loss Paradox", Phys. Rev. Lett. 118, 045001 (2017).

- For uniform plasmas, the plasma wakefield, i.e., the relativistic mirror, is induced instantly by the impinging laser, under the "*Principle of Wakefield*"
- Plasma wakefield follows behind the driver by one wavelength
 - Nonlinear plasma wakefield is described by the (normalized) scalar and vector potentials \u03c6 and u by the coupled equations

$$\begin{bmatrix} \frac{2}{c} \frac{\partial}{\partial \chi} - \frac{1}{c^2} \frac{\partial}{\partial \tau} \end{bmatrix} \frac{\partial a}{\partial \tau} = k_{p0}^2 \frac{a}{1+\phi},$$
$$\frac{\partial^2 \phi}{\partial \chi^2} = -\frac{k_{p0}^2}{2} \left[1 - \frac{(1+a)^2}{(1+\phi)^2} \right].$$

Natural tendency of laser deceleration due to wakefield excitation

• The deceleration (or redshift) of the laser (and therefore the mirror) is governed by

$$\frac{\partial \omega}{\partial \chi} = -\frac{1}{2} \frac{\omega_p}{\omega} \frac{\partial}{\partial \chi} \frac{1}{1+\phi}.$$

• Let us model the laser envelope as

$$a_L(\chi) = a_{L0} \sin\left(\frac{\pi\chi}{L}\right),$$

$$-L \leq \chi \leq 0.$$

38

Then the solution is

$$\phi \simeq \frac{a_{L0}^2 k_p^2}{8} \left\{ \chi^2 - 2 \left(\frac{L}{2\pi} \right)^2 \left[1 - \cos(2\pi \chi / L) \right] \right\}.$$

and

$$\frac{\partial \phi}{\partial \chi} \simeq \frac{a_{L0}^2 k_p^2}{4} \left\{ \chi - \frac{L}{\pi} \sin\left(\frac{2\pi\chi}{L}\right) \right\} < 0.$$

Acceleration of the plasma mirror

Invoking the "wakefield principle",

$$\ddot{x}_{M} = \frac{dv_{g}}{dt} = v_{g} \frac{\partial v_{g}}{\partial x} = \eta c^{2} \frac{\partial \eta}{\partial x}.$$

where the refractive index $\eta = \sqrt{1 - (\omega_p^2 / \omega^2) / (1 + \phi)}$,

we find

$$v_M \simeq c_{\sqrt{1 - \frac{\omega_{p0}^2}{\omega^2} \frac{1}{1 + \phi}} \left(1 + \frac{\partial \omega_p}{\partial x} \frac{t}{k_{p0}}\right).$$

Finally, $\ddot{x}_{M} = \frac{c}{2\eta_{0}} \left[v_{g} \left(1 + \frac{\omega_{p0}^{2}}{\omega^{2}} \right) \frac{\omega_{p0}^{2}}{\omega^{2}} \frac{\partial}{\partial x} \frac{1}{1 + \phi} \right] \left(1 + \frac{\partial \omega_{p}}{\partial x} \frac{t}{k_{p0}} \right) + c\eta_{0} \left(\frac{\partial \omega_{p}}{\partial x} \frac{1}{k_{p0}} + \frac{\partial^{2} \omega_{p}}{\partial x^{2}} \frac{v_{g}t}{k_{p0}} \right).$ Due to frequency redshift Due to density gradient

A conceptual design of the accelerating plasma mirror experiment

Plasma density variation

 Invoking nano-fabrication technology for solid plasma targets with, for example, a power-law increase of density:

$$n_{p0}e^{\pm x/D}, \begin{cases} n_{p0}(1+x/D)^{2(1-\eta_0)}, 0 \le x \le X, \\ 0, & \text{otherwise} \end{cases}$$

• Then the acceleration is

$$\ddot{x}_{M} = \frac{(1 - \eta_{0})c^{2}}{D(1 + x/D)^{2}} \exp\left(\frac{(1 - \eta_{0})x/D}{1 + x/D}\right), \quad 0 \le x \le X.$$

Example

The 4 length scales should satisfy the inequality:

 $\lambda_x \ll \lambda_p \ll D \ll X.$ $(\lambda_x \simeq 7.79nm)$

Plasma target based on nanotechnology with

 $\lambda_{p0} = 7.8 nm$ D = 10 nm, thickness X = 2D, and density $n_{n0} \sim 5 \times 10^{23} cm^{-3} \implies$

- The mirror velocity: $v_{M}(0) \sim 0.01c \implies v_{M}(2D) \sim 0.997c$
- Reflectivity of plasma mirror at this frequency: $Y \approx 1$

Corresponding Hawking temperature:

$$k_{B}T_{H}(x) \simeq \frac{\hbar c}{4\pi D} \frac{\omega_{p0}^{2}}{\omega_{0}^{2}} \frac{1}{(1+x/D)^{2}} \exp\left\{\frac{(1-\eta_{0})x/D}{1+x/D}\right\} \sim 1.6 - 0.1 eV.$$

Background noise not severe

- One salient feature of this experiment: The Hawking signals propagate backward, whereas most x-ray or optical laser induced background particles would move forward.
- Since the x-ray energy 25 eV << m_e = 0.5 MeV, Compton backscattering induced by x-ray would have similar frequency at 25 eV
- Bragg diffraction crystal is designed to let pass the 25 eV but divert the 1-10 eV photons, these background signals would therefore be directed to a different path.
- In conclusion, the background in this experiment should be minute.

AnaBHEL Collaboration formed (Analog Black Hole Evaporation via Lasers) National Taiwan University + Ecole Polytechnique + Kansai Photon Research Inst. + Shanghai Jiao Tong U.

- Two stages:
 - Proof of principle at KPRI Laser facility, presently one of the most powerful lasers in the world @ PW
 Full scale expt. with 10PW APOLLON laser, Saclay when completed in 2018

What can we learn from AnaBHEL?

- First, if we can detect the **thermal radiation**, then in itself it confirms QFT in curved spacetime.
- Second, if we can experimentally measure the entanglement entropy of radiation (this is a challenge) before, during, and after the acceleration, then it can test the renormalization method for the entanglement entropy.
- Third, one can expect that as the mirror stops, there maybe violent effects on the mirror: firewall-like burning mirror?

Summary

- Hawking evaporation and information loss paradox is one of the fundamental problems in physics.
- So far investigations are essentially theoretical; Direct observation of black hole end-stage unlikely.
- Quantum entanglement between Hawking radiation and partner particle may reveal the secrete.
- Accelerating plasma mirrors may serve to address some aspects of this paradox experimentally.