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Mathematical Motivation

Radiation from accelerated 
objects has been studied for a 
long time, but...

... mostly solutions are: 
numerical; perturbative; and 
suffer from infra-red and ultra-
violet divergences.



Mathematical Motivation

 
 

Formation of a Bose Einstein Condensate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quantum Teleportation Experiment 

K ◃ ≥ I!X A:X B" − χ!X B :E"; (1)

where the left-pointing white triangle denotes the direction of
information flow during reconciliation from Bob to Alice.
A right-pointing triangle would signify DR from Alice to Bob.
Here, I!X A:X B" # H !X A" −H !X AjX B" denotes the classical
mutual information between Alice and Bob, with H !X " # −R
dxp!x" log p!x" being the continuous Shannon entropy of the

measurement strings and χ!X B :E" # S!E" −
R
dxBp!xB"S!E jxB"

denotes the Holevo bound, with S!E" # −tr!ρE log ρE " the
von Neumann entropy and S!E jB" # S!EB" − S!B" the condi-
tional von Neumann entropy of E given B. In the case that sys-
tems are classical, e.g., B # X B , the von Neumann entropies may
be replaced by Shannon entropies.

One can alternatively analyze the security in terms of the con-
ditional entropy of the observable x̂B from the perspective of a
quantum eavesdropper E :

S!X BjE" # H !X B" $
Z

dxBp!xB"S!ρ
xB
E " − S!E"; (2)

where ρxBE is the conditional state of E given measurement out-
come xB .

Writing out the key rate in Eq. (1) in full and comparing with
Eq. (2) we have

K ◃ ≥ H !X B" $
Z

dxBp!xB"S!ρ
xB
E "

− S!E" −H !X BjX A"

# S!X BjE" −H !X BjX A": (3)

Bounding the conditional entropy of an observable is the
longstanding goal of the study of entropic uncertainty relations
[1,2]. For our purposes, we require a general tripartite relation,
encompassing Alice, Bob, and Eve, that holds for continuous
quadrature observables in an infinite-dimensional Hilbert space
(see Supplement 1 for details). Very recently, an appropriate re-
lation bounding the entropy of Bob and Eve regarding the con-
jugate quadratures of Alice has been derived [43,44,51]:

S!X AjE" $ S!PAjB" ≥ log 2πℏ: (4)

This entropic uncertainty relation now allows us to bound
the eaves-droppers information on the relevant observable.
Substituting from Eq. (4) and recalling that S!PAjB" ≤
S!PAjPB" # H !PAjPB", we can write

K ◃ ≥ log 4π −H !X AjX B" − S!PBjA"

≥ log 4π −H !X AjX B" −H !PAjPB"; (5)

where we have explicitly set our vacuum noise equal to 1 (this
corresponds to setting ℏ # 2).

Thus we have bounded the secret key by an expression that
depends only upon the conditional Shannon entropies that
are directly accessible to Alice and Bob. Furthermore, one
can show via a variational calculation that, for any probability
distribution p!x", the corresponding Shannon entropy is maxi-
mized for a Gaussian distribution of the same variance. In other
words, Alice and Bob can bound their secret key rate for this
protocol by measuring Bob’s conditional variances. Substituting
the Shannon entropy for a Gaussian distribution HG!xBjxA" #
log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πeV X B jX A

p
, where V XB jX A

# V XB
− hX AX Bi2

V XA
is Bob’s

variance conditioned on Alice’s measurement, we arrive at the
final expression for the RR key rate:

K ◃ ≥ log

"
2

e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V XB jX A

V PB jPA

p
#
: (6)

The DR expression is obtained by simply permuting the labels
of Alice and Bob. We note that this expression was also calculated
in Ref. [51], but the proof was incomplete, as it relied on the
assumption of the applicability of the entropic uncertainty rela-
tion. Moreover, it was incorrectly concluded that this method
would never predict a positive key when applied to coherent
state or heterodyne protocols. In fact, the extension of Eq. (6)
to the other Gaussian protocols is straightforward and is given
in Supplement 1.

B. 1sDI-CV-QKD

An important benefit of utilizing entropic uncertainty relations
in QKD proofs is that they lend themselves toward 1sDI proto-
cols [28,29]. These are relaxed versions of the fully DI schemes
[18–20] in which all devices are untrusted and the security is
guaranteed via a detection-loophole-free Bell violation. The only
assumptions that need to be made for DI schemes are the security
of the stations, the causal independence of the measurement trials,
and a trusted source of randomness for choosing measurement
settings. We adopt the same assumptions here; however, it should
be noted that recently schemes have appeared that do not require
causal independence [21,22].

For 1sDI-QKD protocols, only one side, Alice or Bob, is un-
trusted and regarded as a black box while the other is assumed to
involve a particular set of quantum operations (see Fig. 1). Now,
the security is linked to the steering inequalities [27] associated
with the observables on the trusted side. The 1sDI nature of these
entropic proofs is manifest in expressions like Eq. (6), in that it
depends upon measuring a known observable upon only one side.
For example, in the derivation, we need to know only that Bob is
measuring either x̂B or p̂B in order to apply the entropic uncer-
tainty relation. Although we write expressions V XB jX A

, as this is
what will be measured in experiments, Alice could be making any
measurement (not necessarily a quadrature measurement), and
the key rate given by Eq. (6) would still hold.

Thus, for EPR states and homodyne measurements, any pos-
itive key predicted via the entropic uncertainty relation is by
definition 1sDI, independent of Alice for RR and Bob for DR
[15,16]. However, this device independence does not necessarily
extend to the protocols involving heterodyne detection. This is
essentially because the proof to derive nonzero key rates for the
heterodyne protocols depends upon characterizing the devices
used in the heterodyne detection. Therefore, employing a hetero-
dyne detection on the supposedly untrusted side immediately
invalidates the device independence. Alternatively, recall that a

Fig. 1. Conceptual picture of a 1sDI-CV-QKD protocol. From the
perspective of Alice (Bob) the local devices are known and allow a secret
key to be extracted from a direct (reverse) reconciliation protocol, even
though the other party exists only as an unknown red (blue) box.
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Problems arise from the detector model 
and non-unitary interactions
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FIG. 1: Penrose diagram of Minkowski spacetime. I0 is the spatial infinity, I� and I+ are the past and future infinities, I �
and I +

are the past and future null infinities. A uniformly accelerated object follows the black worldline. Interactions between the accelerated

object and the field are localized in Rindler time, represented by the shaded region.

excitation probability of an ideal, inertial, 2-level system of resonant frequency ⌦, coupled weakly to the field, is

proportional to hN̂ki [16]. We can model a finite bandwidth detector via the operator N̂
�k =

R k
o

+�k
k
o

��k dk â

†
kâk. If the

bandwidth of the detector is much larger than that of the mode under consideration then we can extend the limits
of integration to ±1 and so define N̂ =

R
dk â

†
kâk. Note that by definition h0|N̂ |0i = 0 for the Minkowski vacuum

state, |0i.
In order to characterize the state of a particular field mode we use homodyne tomography [17]. In homodyne

tomography, the Wigner function [16] of the state is reconstructed from measurements of the moments of quadrature
amplitudes via homodyne detection. For Gaussian states it is su�cient to measure and analyse only the first and
second order moments [18]. In homodyne detection [19], a weak signal field and a strong local oscillator are coherently
combined and measured with broad-band detection as discussed above. For simplicity and to stay within the 1+1,
scalar field paradigm, we specifically use self-homodyne detection here. In self-homodyne detection, the signal field
is displaced by a strong local oscillator directly, and the output field is detected. Assume that the signal field mode
operator is â =

R
dkf(k)âk and the local oscillator is a strong coherent state |↵i, prepared in the same field mode

(characterized by f(k)) with ↵ a complex number, ↵ = |↵|ei�, and |↵| � 1. The photon number operator can be
shown to be

N̂(�) ⇡ |↵|2 + |↵|X̂(�) (1)

where X̂(�) = âe

�i� + â

†
e

i� is the quadrature amplitude of the signal field and a term not multiplied by |↵| has been
neglected as small. As a reference we can also consider the operator

N̂

0

⇡ |↵|2 + |↵|X̂v (2)

representing the situation where the signal is not imposed and so v̂ represents the mode when it is prepared in the
vacuum state. Hence the average quadrature amplitude of the field is given by

hX̂(�)i = hN̂(�)i � hN̂
0

iq
hN̂

0

i
(3)

where we have used hX̂vi = 0. Its variance is given by

�
�X(�)

�
2

=

�
�N(�)

�
2

hN̂
0

i
. (4)

For the Gaussian states considered here this will be su�cient to completely characterize them. We wish to apply
this technique to the output state from the interactions between a uniformly accelerated object and the scalar field.
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Quantum Teleportation Experiment 

K ◃ ≥ I!X A:X B" − χ!X B :E"; (1)

where the left-pointing white triangle denotes the direction of
information flow during reconciliation from Bob to Alice.
A right-pointing triangle would signify DR from Alice to Bob.
Here, I!X A:X B" # H !X A" −H !X AjX B" denotes the classical
mutual information between Alice and Bob, with H !X " # −R
dxp!x" log p!x" being the continuous Shannon entropy of the

measurement strings and χ!X B :E" # S!E" −
R
dxBp!xB"S!E jxB"

denotes the Holevo bound, with S!E" # −tr!ρE log ρE " the
von Neumann entropy and S!E jB" # S!EB" − S!B" the condi-
tional von Neumann entropy of E given B. In the case that sys-
tems are classical, e.g., B # X B , the von Neumann entropies may
be replaced by Shannon entropies.

One can alternatively analyze the security in terms of the con-
ditional entropy of the observable x̂B from the perspective of a
quantum eavesdropper E :

S!X BjE" # H !X B" $
Z

dxBp!xB"S!ρ
xB
E " − S!E"; (2)

where ρxBE is the conditional state of E given measurement out-
come xB .

Writing out the key rate in Eq. (1) in full and comparing with
Eq. (2) we have

K ◃ ≥ H !X B" $
Z

dxBp!xB"S!ρ
xB
E "

− S!E" −H !X BjX A"

# S!X BjE" −H !X BjX A": (3)

Bounding the conditional entropy of an observable is the
longstanding goal of the study of entropic uncertainty relations
[1,2]. For our purposes, we require a general tripartite relation,
encompassing Alice, Bob, and Eve, that holds for continuous
quadrature observables in an infinite-dimensional Hilbert space
(see Supplement 1 for details). Very recently, an appropriate re-
lation bounding the entropy of Bob and Eve regarding the con-
jugate quadratures of Alice has been derived [43,44,51]:

S!X AjE" $ S!PAjB" ≥ log 2πℏ: (4)

This entropic uncertainty relation now allows us to bound
the eaves-droppers information on the relevant observable.
Substituting from Eq. (4) and recalling that S!PAjB" ≤
S!PAjPB" # H !PAjPB", we can write

K ◃ ≥ log 4π −H !X AjX B" − S!PBjA"

≥ log 4π −H !X AjX B" −H !PAjPB"; (5)

where we have explicitly set our vacuum noise equal to 1 (this
corresponds to setting ℏ # 2).

Thus we have bounded the secret key by an expression that
depends only upon the conditional Shannon entropies that
are directly accessible to Alice and Bob. Furthermore, one
can show via a variational calculation that, for any probability
distribution p!x", the corresponding Shannon entropy is maxi-
mized for a Gaussian distribution of the same variance. In other
words, Alice and Bob can bound their secret key rate for this
protocol by measuring Bob’s conditional variances. Substituting
the Shannon entropy for a Gaussian distribution HG!xBjxA" #
log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πeV X B jX A

p
, where V XB jX A

# V XB
− hX AX Bi2

V XA
is Bob’s

variance conditioned on Alice’s measurement, we arrive at the
final expression for the RR key rate:

K ◃ ≥ log

"
2

e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V XB jX A

V PB jPA

p
#
: (6)

The DR expression is obtained by simply permuting the labels
of Alice and Bob. We note that this expression was also calculated
in Ref. [51], but the proof was incomplete, as it relied on the
assumption of the applicability of the entropic uncertainty rela-
tion. Moreover, it was incorrectly concluded that this method
would never predict a positive key when applied to coherent
state or heterodyne protocols. In fact, the extension of Eq. (6)
to the other Gaussian protocols is straightforward and is given
in Supplement 1.

B. 1sDI-CV-QKD

An important benefit of utilizing entropic uncertainty relations
in QKD proofs is that they lend themselves toward 1sDI proto-
cols [28,29]. These are relaxed versions of the fully DI schemes
[18–20] in which all devices are untrusted and the security is
guaranteed via a detection-loophole-free Bell violation. The only
assumptions that need to be made for DI schemes are the security
of the stations, the causal independence of the measurement trials,
and a trusted source of randomness for choosing measurement
settings. We adopt the same assumptions here; however, it should
be noted that recently schemes have appeared that do not require
causal independence [21,22].

For 1sDI-QKD protocols, only one side, Alice or Bob, is un-
trusted and regarded as a black box while the other is assumed to
involve a particular set of quantum operations (see Fig. 1). Now,
the security is linked to the steering inequalities [27] associated
with the observables on the trusted side. The 1sDI nature of these
entropic proofs is manifest in expressions like Eq. (6), in that it
depends upon measuring a known observable upon only one side.
For example, in the derivation, we need to know only that Bob is
measuring either x̂B or p̂B in order to apply the entropic uncer-
tainty relation. Although we write expressions V XB jX A

, as this is
what will be measured in experiments, Alice could be making any
measurement (not necessarily a quadrature measurement), and
the key rate given by Eq. (6) would still hold.

Thus, for EPR states and homodyne measurements, any pos-
itive key predicted via the entropic uncertainty relation is by
definition 1sDI, independent of Alice for RR and Bob for DR
[15,16]. However, this device independence does not necessarily
extend to the protocols involving heterodyne detection. This is
essentially because the proof to derive nonzero key rates for the
heterodyne protocols depends upon characterizing the devices
used in the heterodyne detection. Therefore, employing a hetero-
dyne detection on the supposedly untrusted side immediately
invalidates the device independence. Alternatively, recall that a

Fig. 1. Conceptual picture of a 1sDI-CV-QKD protocol. From the
perspective of Alice (Bob) the local devices are known and allow a secret
key to be extracted from a direct (reverse) reconciliation protocol, even
though the other party exists only as an unknown red (blue) box.
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FIG. 1: Penrose diagram of Minkowski spacetime. I0 is the spatial infinity, I� and I+ are the past and future infinities, I �
and I +

are the past and future null infinities. A uniformly accelerated object follows the black worldline. Interactions between the accelerated

object and the field are localized in Rindler time, represented by the shaded region.

excitation probability of an ideal, inertial, 2-level system of resonant frequency ⌦, coupled weakly to the field, is

proportional to hN̂ki [16]. We can model a finite bandwidth detector via the operator N̂
�k =

R k
o

+�k
k
o

��k dk â

†
kâk. If the

bandwidth of the detector is much larger than that of the mode under consideration then we can extend the limits
of integration to ±1 and so define N̂ =

R
dk â

†
kâk. Note that by definition h0|N̂ |0i = 0 for the Minkowski vacuum

state, |0i.
In order to characterize the state of a particular field mode we use homodyne tomography [17]. In homodyne

tomography, the Wigner function [16] of the state is reconstructed from measurements of the moments of quadrature
amplitudes via homodyne detection. For Gaussian states it is su�cient to measure and analyse only the first and
second order moments [18]. In homodyne detection [19], a weak signal field and a strong local oscillator are coherently
combined and measured with broad-band detection as discussed above. For simplicity and to stay within the 1+1,
scalar field paradigm, we specifically use self-homodyne detection here. In self-homodyne detection, the signal field
is displaced by a strong local oscillator directly, and the output field is detected. Assume that the signal field mode
operator is â =

R
dkf(k)âk and the local oscillator is a strong coherent state |↵i, prepared in the same field mode

(characterized by f(k)) with ↵ a complex number, ↵ = |↵|ei�, and |↵| � 1. The photon number operator can be
shown to be

N̂(�) ⇡ |↵|2 + |↵|X̂(�) (1)

where X̂(�) = âe

�i� + â

†
e

i� is the quadrature amplitude of the signal field and a term not multiplied by |↵| has been
neglected as small. As a reference we can also consider the operator

N̂

0

⇡ |↵|2 + |↵|X̂v (2)

representing the situation where the signal is not imposed and so v̂ represents the mode when it is prepared in the
vacuum state. Hence the average quadrature amplitude of the field is given by

hX̂(�)i = hN̂(�)i � hN̂
0

iq
hN̂

0

i
(3)

where we have used hX̂vi = 0. Its variance is given by

�
�X(�)

�
2

=

�
�N(�)

�
2

hN̂
0

i
. (4)

For the Gaussian states considered here this will be su�cient to completely characterize them. We wish to apply
this technique to the output state from the interactions between a uniformly accelerated object and the scalar field.
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Quantum Teleportation Experiment 

K ◃ ≥ I!X A:X B" − χ!X B :E"; (1)

where the left-pointing white triangle denotes the direction of
information flow during reconciliation from Bob to Alice.
A right-pointing triangle would signify DR from Alice to Bob.
Here, I!X A:X B" # H !X A" −H !X AjX B" denotes the classical
mutual information between Alice and Bob, with H !X " # −R
dxp!x" log p!x" being the continuous Shannon entropy of the

measurement strings and χ!X B :E" # S!E" −
R
dxBp!xB"S!E jxB"

denotes the Holevo bound, with S!E" # −tr!ρE log ρE " the
von Neumann entropy and S!E jB" # S!EB" − S!B" the condi-
tional von Neumann entropy of E given B. In the case that sys-
tems are classical, e.g., B # X B , the von Neumann entropies may
be replaced by Shannon entropies.

One can alternatively analyze the security in terms of the con-
ditional entropy of the observable x̂B from the perspective of a
quantum eavesdropper E :

S!X BjE" # H !X B" $
Z

dxBp!xB"S!ρ
xB
E " − S!E"; (2)

where ρxBE is the conditional state of E given measurement out-
come xB .

Writing out the key rate in Eq. (1) in full and comparing with
Eq. (2) we have

K ◃ ≥ H !X B" $
Z

dxBp!xB"S!ρ
xB
E "

− S!E" −H !X BjX A"

# S!X BjE" −H !X BjX A": (3)

Bounding the conditional entropy of an observable is the
longstanding goal of the study of entropic uncertainty relations
[1,2]. For our purposes, we require a general tripartite relation,
encompassing Alice, Bob, and Eve, that holds for continuous
quadrature observables in an infinite-dimensional Hilbert space
(see Supplement 1 for details). Very recently, an appropriate re-
lation bounding the entropy of Bob and Eve regarding the con-
jugate quadratures of Alice has been derived [43,44,51]:

S!X AjE" $ S!PAjB" ≥ log 2πℏ: (4)

This entropic uncertainty relation now allows us to bound
the eaves-droppers information on the relevant observable.
Substituting from Eq. (4) and recalling that S!PAjB" ≤
S!PAjPB" # H !PAjPB", we can write

K ◃ ≥ log 4π −H !X AjX B" − S!PBjA"

≥ log 4π −H !X AjX B" −H !PAjPB"; (5)

where we have explicitly set our vacuum noise equal to 1 (this
corresponds to setting ℏ # 2).

Thus we have bounded the secret key by an expression that
depends only upon the conditional Shannon entropies that
are directly accessible to Alice and Bob. Furthermore, one
can show via a variational calculation that, for any probability
distribution p!x", the corresponding Shannon entropy is maxi-
mized for a Gaussian distribution of the same variance. In other
words, Alice and Bob can bound their secret key rate for this
protocol by measuring Bob’s conditional variances. Substituting
the Shannon entropy for a Gaussian distribution HG!xBjxA" #
log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πeV X B jX A

p
, where V XB jX A

# V XB
− hX AX Bi2

V XA
is Bob’s

variance conditioned on Alice’s measurement, we arrive at the
final expression for the RR key rate:

K ◃ ≥ log

"
2

e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V XB jX A

V PB jPA

p
#
: (6)

The DR expression is obtained by simply permuting the labels
of Alice and Bob. We note that this expression was also calculated
in Ref. [51], but the proof was incomplete, as it relied on the
assumption of the applicability of the entropic uncertainty rela-
tion. Moreover, it was incorrectly concluded that this method
would never predict a positive key when applied to coherent
state or heterodyne protocols. In fact, the extension of Eq. (6)
to the other Gaussian protocols is straightforward and is given
in Supplement 1.

B. 1sDI-CV-QKD

An important benefit of utilizing entropic uncertainty relations
in QKD proofs is that they lend themselves toward 1sDI proto-
cols [28,29]. These are relaxed versions of the fully DI schemes
[18–20] in which all devices are untrusted and the security is
guaranteed via a detection-loophole-free Bell violation. The only
assumptions that need to be made for DI schemes are the security
of the stations, the causal independence of the measurement trials,
and a trusted source of randomness for choosing measurement
settings. We adopt the same assumptions here; however, it should
be noted that recently schemes have appeared that do not require
causal independence [21,22].

For 1sDI-QKD protocols, only one side, Alice or Bob, is un-
trusted and regarded as a black box while the other is assumed to
involve a particular set of quantum operations (see Fig. 1). Now,
the security is linked to the steering inequalities [27] associated
with the observables on the trusted side. The 1sDI nature of these
entropic proofs is manifest in expressions like Eq. (6), in that it
depends upon measuring a known observable upon only one side.
For example, in the derivation, we need to know only that Bob is
measuring either x̂B or p̂B in order to apply the entropic uncer-
tainty relation. Although we write expressions V XB jX A

, as this is
what will be measured in experiments, Alice could be making any
measurement (not necessarily a quadrature measurement), and
the key rate given by Eq. (6) would still hold.

Thus, for EPR states and homodyne measurements, any pos-
itive key predicted via the entropic uncertainty relation is by
definition 1sDI, independent of Alice for RR and Bob for DR
[15,16]. However, this device independence does not necessarily
extend to the protocols involving heterodyne detection. This is
essentially because the proof to derive nonzero key rates for the
heterodyne protocols depends upon characterizing the devices
used in the heterodyne detection. Therefore, employing a hetero-
dyne detection on the supposedly untrusted side immediately
invalidates the device independence. Alternatively, recall that a

Fig. 1. Conceptual picture of a 1sDI-CV-QKD protocol. From the
perspective of Alice (Bob) the local devices are known and allow a secret
key to be extracted from a direct (reverse) reconciliation protocol, even
though the other party exists only as an unknown red (blue) box.
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and I +

are the past and future null infinities. A uniformly accelerated object follows the black worldline. Interactions between the accelerated
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excitation probability of an ideal, inertial, 2-level system of resonant frequency ⌦, coupled weakly to the field, is

proportional to hN̂ki [16]. We can model a finite bandwidth detector via the operator N̂
�k =

R k
o

+�k
k
o

��k dk â

†
kâk. If the

bandwidth of the detector is much larger than that of the mode under consideration then we can extend the limits
of integration to ±1 and so define N̂ =

R
dk â

†
kâk. Note that by definition h0|N̂ |0i = 0 for the Minkowski vacuum

state, |0i.
In order to characterize the state of a particular field mode we use homodyne tomography [17]. In homodyne

tomography, the Wigner function [16] of the state is reconstructed from measurements of the moments of quadrature
amplitudes via homodyne detection. For Gaussian states it is su�cient to measure and analyse only the first and
second order moments [18]. In homodyne detection [19], a weak signal field and a strong local oscillator are coherently
combined and measured with broad-band detection as discussed above. For simplicity and to stay within the 1+1,
scalar field paradigm, we specifically use self-homodyne detection here. In self-homodyne detection, the signal field
is displaced by a strong local oscillator directly, and the output field is detected. Assume that the signal field mode
operator is â =

R
dkf(k)âk and the local oscillator is a strong coherent state |↵i, prepared in the same field mode

(characterized by f(k)) with ↵ a complex number, ↵ = |↵|ei�, and |↵| � 1. The photon number operator can be
shown to be

N̂(�) ⇡ |↵|2 + |↵|X̂(�) (1)

where X̂(�) = âe

�i� + â

†
e

i� is the quadrature amplitude of the signal field and a term not multiplied by |↵| has been
neglected as small. As a reference we can also consider the operator

N̂

0

⇡ |↵|2 + |↵|X̂v (2)

representing the situation where the signal is not imposed and so v̂ represents the mode when it is prepared in the
vacuum state. Hence the average quadrature amplitude of the field is given by

hX̂(�)i = hN̂(�)i � hN̂
0

iq
hN̂

0

i
(3)

where we have used hX̂vi = 0. Its variance is given by

�
�X(�)

�
2

=

�
�N(�)

�
2

hN̂
0

i
. (4)

For the Gaussian states considered here this will be su�cient to completely characterize them. We wish to apply
this technique to the output state from the interactions between a uniformly accelerated object and the scalar field.
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Quantum Teleportation Experiment 

K ◃ ≥ I!X A:X B" − χ!X B :E"; (1)

where the left-pointing white triangle denotes the direction of
information flow during reconciliation from Bob to Alice.
A right-pointing triangle would signify DR from Alice to Bob.
Here, I!X A:X B" # H !X A" −H !X AjX B" denotes the classical
mutual information between Alice and Bob, with H !X " # −R
dxp!x" log p!x" being the continuous Shannon entropy of the

measurement strings and χ!X B :E" # S!E" −
R
dxBp!xB"S!E jxB"

denotes the Holevo bound, with S!E" # −tr!ρE log ρE " the
von Neumann entropy and S!E jB" # S!EB" − S!B" the condi-
tional von Neumann entropy of E given B. In the case that sys-
tems are classical, e.g., B # X B , the von Neumann entropies may
be replaced by Shannon entropies.

One can alternatively analyze the security in terms of the con-
ditional entropy of the observable x̂B from the perspective of a
quantum eavesdropper E :

S!X BjE" # H !X B" $
Z

dxBp!xB"S!ρ
xB
E " − S!E"; (2)

where ρxBE is the conditional state of E given measurement out-
come xB .

Writing out the key rate in Eq. (1) in full and comparing with
Eq. (2) we have

K ◃ ≥ H !X B" $
Z

dxBp!xB"S!ρ
xB
E "

− S!E" −H !X BjX A"

# S!X BjE" −H !X BjX A": (3)

Bounding the conditional entropy of an observable is the
longstanding goal of the study of entropic uncertainty relations
[1,2]. For our purposes, we require a general tripartite relation,
encompassing Alice, Bob, and Eve, that holds for continuous
quadrature observables in an infinite-dimensional Hilbert space
(see Supplement 1 for details). Very recently, an appropriate re-
lation bounding the entropy of Bob and Eve regarding the con-
jugate quadratures of Alice has been derived [43,44,51]:

S!X AjE" $ S!PAjB" ≥ log 2πℏ: (4)

This entropic uncertainty relation now allows us to bound
the eaves-droppers information on the relevant observable.
Substituting from Eq. (4) and recalling that S!PAjB" ≤
S!PAjPB" # H !PAjPB", we can write

K ◃ ≥ log 4π −H !X AjX B" − S!PBjA"

≥ log 4π −H !X AjX B" −H !PAjPB"; (5)

where we have explicitly set our vacuum noise equal to 1 (this
corresponds to setting ℏ # 2).

Thus we have bounded the secret key by an expression that
depends only upon the conditional Shannon entropies that
are directly accessible to Alice and Bob. Furthermore, one
can show via a variational calculation that, for any probability
distribution p!x", the corresponding Shannon entropy is maxi-
mized for a Gaussian distribution of the same variance. In other
words, Alice and Bob can bound their secret key rate for this
protocol by measuring Bob’s conditional variances. Substituting
the Shannon entropy for a Gaussian distribution HG!xBjxA" #
log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πeV X B jX A

p
, where V XB jX A

# V XB
− hX AX Bi2

V XA
is Bob’s

variance conditioned on Alice’s measurement, we arrive at the
final expression for the RR key rate:

K ◃ ≥ log

"
2

e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V XB jX A

V PB jPA

p
#
: (6)

The DR expression is obtained by simply permuting the labels
of Alice and Bob. We note that this expression was also calculated
in Ref. [51], but the proof was incomplete, as it relied on the
assumption of the applicability of the entropic uncertainty rela-
tion. Moreover, it was incorrectly concluded that this method
would never predict a positive key when applied to coherent
state or heterodyne protocols. In fact, the extension of Eq. (6)
to the other Gaussian protocols is straightforward and is given
in Supplement 1.

B. 1sDI-CV-QKD

An important benefit of utilizing entropic uncertainty relations
in QKD proofs is that they lend themselves toward 1sDI proto-
cols [28,29]. These are relaxed versions of the fully DI schemes
[18–20] in which all devices are untrusted and the security is
guaranteed via a detection-loophole-free Bell violation. The only
assumptions that need to be made for DI schemes are the security
of the stations, the causal independence of the measurement trials,
and a trusted source of randomness for choosing measurement
settings. We adopt the same assumptions here; however, it should
be noted that recently schemes have appeared that do not require
causal independence [21,22].

For 1sDI-QKD protocols, only one side, Alice or Bob, is un-
trusted and regarded as a black box while the other is assumed to
involve a particular set of quantum operations (see Fig. 1). Now,
the security is linked to the steering inequalities [27] associated
with the observables on the trusted side. The 1sDI nature of these
entropic proofs is manifest in expressions like Eq. (6), in that it
depends upon measuring a known observable upon only one side.
For example, in the derivation, we need to know only that Bob is
measuring either x̂B or p̂B in order to apply the entropic uncer-
tainty relation. Although we write expressions V XB jX A

, as this is
what will be measured in experiments, Alice could be making any
measurement (not necessarily a quadrature measurement), and
the key rate given by Eq. (6) would still hold.

Thus, for EPR states and homodyne measurements, any pos-
itive key predicted via the entropic uncertainty relation is by
definition 1sDI, independent of Alice for RR and Bob for DR
[15,16]. However, this device independence does not necessarily
extend to the protocols involving heterodyne detection. This is
essentially because the proof to derive nonzero key rates for the
heterodyne protocols depends upon characterizing the devices
used in the heterodyne detection. Therefore, employing a hetero-
dyne detection on the supposedly untrusted side immediately
invalidates the device independence. Alternatively, recall that a

Fig. 1. Conceptual picture of a 1sDI-CV-QKD protocol. From the
perspective of Alice (Bob) the local devices are known and allow a secret
key to be extracted from a direct (reverse) reconciliation protocol, even
though the other party exists only as an unknown red (blue) box.
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FIG. 1: Penrose diagram of Minkowski spacetime. I0 is the spatial infinity, I� and I+ are the past and future infinities, I �
and I +

are the past and future null infinities. A uniformly accelerated object follows the black worldline. Interactions between the accelerated

object and the field are localized in Rindler time, represented by the shaded region.

excitation probability of an ideal, inertial, 2-level system of resonant frequency ⌦, coupled weakly to the field, is

proportional to hN̂ki [16]. We can model a finite bandwidth detector via the operator N̂
�k =

R k
o

+�k
k
o

��k dk â

†
kâk. If the

bandwidth of the detector is much larger than that of the mode under consideration then we can extend the limits
of integration to ±1 and so define N̂ =

R
dk â

†
kâk. Note that by definition h0|N̂ |0i = 0 for the Minkowski vacuum

state, |0i.
In order to characterize the state of a particular field mode we use homodyne tomography [17]. In homodyne

tomography, the Wigner function [16] of the state is reconstructed from measurements of the moments of quadrature
amplitudes via homodyne detection. For Gaussian states it is su�cient to measure and analyse only the first and
second order moments [18]. In homodyne detection [19], a weak signal field and a strong local oscillator are coherently
combined and measured with broad-band detection as discussed above. For simplicity and to stay within the 1+1,
scalar field paradigm, we specifically use self-homodyne detection here. In self-homodyne detection, the signal field
is displaced by a strong local oscillator directly, and the output field is detected. Assume that the signal field mode
operator is â =

R
dkf(k)âk and the local oscillator is a strong coherent state |↵i, prepared in the same field mode

(characterized by f(k)) with ↵ a complex number, ↵ = |↵|ei�, and |↵| � 1. The photon number operator can be
shown to be

N̂(�) ⇡ |↵|2 + |↵|X̂(�) (1)

where X̂(�) = âe

�i� + â

†
e

i� is the quadrature amplitude of the signal field and a term not multiplied by |↵| has been
neglected as small. As a reference we can also consider the operator

N̂

0

⇡ |↵|2 + |↵|X̂v (2)

representing the situation where the signal is not imposed and so v̂ represents the mode when it is prepared in the
vacuum state. Hence the average quadrature amplitude of the field is given by

hX̂(�)i = hN̂(�)i � hN̂
0

iq
hN̂

0

i
(3)

where we have used hX̂vi = 0. Its variance is given by

�
�X(�)

�
2

=

�
�N(�)

�
2

hN̂
0

i
. (4)

For the Gaussian states considered here this will be su�cient to completely characterize them. We wish to apply
this technique to the output state from the interactions between a uniformly accelerated object and the scalar field.
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Quantum Teleportation Experiment 

K ◃ ≥ I!X A:X B" − χ!X B :E"; (1)

where the left-pointing white triangle denotes the direction of
information flow during reconciliation from Bob to Alice.
A right-pointing triangle would signify DR from Alice to Bob.
Here, I!X A:X B" # H !X A" −H !X AjX B" denotes the classical
mutual information between Alice and Bob, with H !X " # −R
dxp!x" log p!x" being the continuous Shannon entropy of the

measurement strings and χ!X B :E" # S!E" −
R
dxBp!xB"S!E jxB"

denotes the Holevo bound, with S!E" # −tr!ρE log ρE " the
von Neumann entropy and S!E jB" # S!EB" − S!B" the condi-
tional von Neumann entropy of E given B. In the case that sys-
tems are classical, e.g., B # X B , the von Neumann entropies may
be replaced by Shannon entropies.

One can alternatively analyze the security in terms of the con-
ditional entropy of the observable x̂B from the perspective of a
quantum eavesdropper E :

S!X BjE" # H !X B" $
Z

dxBp!xB"S!ρ
xB
E " − S!E"; (2)

where ρxBE is the conditional state of E given measurement out-
come xB .

Writing out the key rate in Eq. (1) in full and comparing with
Eq. (2) we have

K ◃ ≥ H !X B" $
Z

dxBp!xB"S!ρ
xB
E "

− S!E" −H !X BjX A"

# S!X BjE" −H !X BjX A": (3)

Bounding the conditional entropy of an observable is the
longstanding goal of the study of entropic uncertainty relations
[1,2]. For our purposes, we require a general tripartite relation,
encompassing Alice, Bob, and Eve, that holds for continuous
quadrature observables in an infinite-dimensional Hilbert space
(see Supplement 1 for details). Very recently, an appropriate re-
lation bounding the entropy of Bob and Eve regarding the con-
jugate quadratures of Alice has been derived [43,44,51]:

S!X AjE" $ S!PAjB" ≥ log 2πℏ: (4)

This entropic uncertainty relation now allows us to bound
the eaves-droppers information on the relevant observable.
Substituting from Eq. (4) and recalling that S!PAjB" ≤
S!PAjPB" # H !PAjPB", we can write

K ◃ ≥ log 4π −H !X AjX B" − S!PBjA"

≥ log 4π −H !X AjX B" −H !PAjPB"; (5)

where we have explicitly set our vacuum noise equal to 1 (this
corresponds to setting ℏ # 2).

Thus we have bounded the secret key by an expression that
depends only upon the conditional Shannon entropies that
are directly accessible to Alice and Bob. Furthermore, one
can show via a variational calculation that, for any probability
distribution p!x", the corresponding Shannon entropy is maxi-
mized for a Gaussian distribution of the same variance. In other
words, Alice and Bob can bound their secret key rate for this
protocol by measuring Bob’s conditional variances. Substituting
the Shannon entropy for a Gaussian distribution HG!xBjxA" #
log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πeV X B jX A

p
, where V XB jX A

# V XB
− hX AX Bi2

V XA
is Bob’s

variance conditioned on Alice’s measurement, we arrive at the
final expression for the RR key rate:

K ◃ ≥ log

"
2

e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V XB jX A

V PB jPA

p
#
: (6)

The DR expression is obtained by simply permuting the labels
of Alice and Bob. We note that this expression was also calculated
in Ref. [51], but the proof was incomplete, as it relied on the
assumption of the applicability of the entropic uncertainty rela-
tion. Moreover, it was incorrectly concluded that this method
would never predict a positive key when applied to coherent
state or heterodyne protocols. In fact, the extension of Eq. (6)
to the other Gaussian protocols is straightforward and is given
in Supplement 1.

B. 1sDI-CV-QKD

An important benefit of utilizing entropic uncertainty relations
in QKD proofs is that they lend themselves toward 1sDI proto-
cols [28,29]. These are relaxed versions of the fully DI schemes
[18–20] in which all devices are untrusted and the security is
guaranteed via a detection-loophole-free Bell violation. The only
assumptions that need to be made for DI schemes are the security
of the stations, the causal independence of the measurement trials,
and a trusted source of randomness for choosing measurement
settings. We adopt the same assumptions here; however, it should
be noted that recently schemes have appeared that do not require
causal independence [21,22].

For 1sDI-QKD protocols, only one side, Alice or Bob, is un-
trusted and regarded as a black box while the other is assumed to
involve a particular set of quantum operations (see Fig. 1). Now,
the security is linked to the steering inequalities [27] associated
with the observables on the trusted side. The 1sDI nature of these
entropic proofs is manifest in expressions like Eq. (6), in that it
depends upon measuring a known observable upon only one side.
For example, in the derivation, we need to know only that Bob is
measuring either x̂B or p̂B in order to apply the entropic uncer-
tainty relation. Although we write expressions V XB jX A

, as this is
what will be measured in experiments, Alice could be making any
measurement (not necessarily a quadrature measurement), and
the key rate given by Eq. (6) would still hold.

Thus, for EPR states and homodyne measurements, any pos-
itive key predicted via the entropic uncertainty relation is by
definition 1sDI, independent of Alice for RR and Bob for DR
[15,16]. However, this device independence does not necessarily
extend to the protocols involving heterodyne detection. This is
essentially because the proof to derive nonzero key rates for the
heterodyne protocols depends upon characterizing the devices
used in the heterodyne detection. Therefore, employing a hetero-
dyne detection on the supposedly untrusted side immediately
invalidates the device independence. Alternatively, recall that a

Fig. 1. Conceptual picture of a 1sDI-CV-QKD protocol. From the
perspective of Alice (Bob) the local devices are known and allow a secret
key to be extracted from a direct (reverse) reconciliation protocol, even
though the other party exists only as an unknown red (blue) box.
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are the past and future null infinities. A uniformly accelerated object follows the black worldline. Interactions between the accelerated

object and the field are localized in Rindler time, represented by the shaded region.

excitation probability of an ideal, inertial, 2-level system of resonant frequency ⌦, coupled weakly to the field, is

proportional to hN̂ki [16]. We can model a finite bandwidth detector via the operator N̂
�k =

R k
o

+�k
k
o

��k dk â

†
kâk. If the

bandwidth of the detector is much larger than that of the mode under consideration then we can extend the limits
of integration to ±1 and so define N̂ =

R
dk â

†
kâk. Note that by definition h0|N̂ |0i = 0 for the Minkowski vacuum

state, |0i.
In order to characterize the state of a particular field mode we use homodyne tomography [17]. In homodyne

tomography, the Wigner function [16] of the state is reconstructed from measurements of the moments of quadrature
amplitudes via homodyne detection. For Gaussian states it is su�cient to measure and analyse only the first and
second order moments [18]. In homodyne detection [19], a weak signal field and a strong local oscillator are coherently
combined and measured with broad-band detection as discussed above. For simplicity and to stay within the 1+1,
scalar field paradigm, we specifically use self-homodyne detection here. In self-homodyne detection, the signal field
is displaced by a strong local oscillator directly, and the output field is detected. Assume that the signal field mode
operator is â =

R
dkf(k)âk and the local oscillator is a strong coherent state |↵i, prepared in the same field mode

(characterized by f(k)) with ↵ a complex number, ↵ = |↵|ei�, and |↵| � 1. The photon number operator can be
shown to be

N̂(�) ⇡ |↵|2 + |↵|X̂(�) (1)

where X̂(�) = âe

�i� + â

†
e

i� is the quadrature amplitude of the signal field and a term not multiplied by |↵| has been
neglected as small. As a reference we can also consider the operator

N̂

0

⇡ |↵|2 + |↵|X̂v (2)

representing the situation where the signal is not imposed and so v̂ represents the mode when it is prepared in the
vacuum state. Hence the average quadrature amplitude of the field is given by

hX̂(�)i = hN̂(�)i � hN̂
0

iq
hN̂

0

i
(3)

where we have used hX̂vi = 0. Its variance is given by

�
�X(�)

�
2

=

�
�N(�)

�
2

hN̂
0

i
. (4)

For the Gaussian states considered here this will be su�cient to completely characterize them. We wish to apply
this technique to the output state from the interactions between a uniformly accelerated object and the scalar field.
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Figure 1. Overview of the distance and velocity scales achievable in a space environment explorable with man-made
systems, with some possible quantum optics experiments at each given distance.

wider and long term context of such missions for science as well as quantum applications such as global-scale quantum
key distribution (QKD).

These and other proposals for satellite-based quantum apparatuses open a door to distances and velocities that
are either prohibitively impractical or simply impossible to achieve on the ground. Here we describe a number of ideas
stemming from a series of discussions that took place at the Perimeter Institute for Theoretical Physics, which focused
on what tests of fundamental quantum physics could be achieved with such experimental setups. We consider a variety
of scenarios, illustrated in Figure 1, of which some will be accessible with today’s technologies, such as a single satellite
at LEO altitudes (500–1000 km). Experiments at larger distances will be possible only on a longer time frame, owing to
their complexity and the advanced technologies that are required, and include systems in geostationary (GEO) orbits
(36,000 km) or even Earth-Moon distances (380,000 km). Visionary experiments involving distances at the scale of the
Earth’s distance to the Sun (150 Gm) are conceivable, but require technologies yet to be developed.

Here we consider experimental scenarios that are visionary in nature, focusing on the scientific novelty of such
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These and other proposals for satellite-based quantum apparatuses open a door to distances and velocities that
are either prohibitively impractical or simply impossible to achieve on the ground. Here we describe a number of ideas
stemming from a series of discussions that took place at the Perimeter Institute for Theoretical Physics, which focused
on what tests of fundamental quantum physics could be achieved with such experimental setups. We consider a variety
of scenarios, illustrated in Figure 1, of which some will be accessible with today’s technologies, such as a single satellite
at LEO altitudes (500–1000 km). Experiments at larger distances will be possible only on a longer time frame, owing to
their complexity and the advanced technologies that are required, and include systems in geostationary (GEO) orbits
(36,000 km) or even Earth-Moon distances (380,000 km). Visionary experiments involving distances at the scale of the
Earth’s distance to the Sun (150 Gm) are conceivable, but require technologies yet to be developed.
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Radiation from accelerated objects
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object, detected 
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observers
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perturbation 
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Relations between three sets of 
modes

Minkowski operators Unruh operators Rindler operators

left-moving and right-moving modes two mode squeezer

Unruh modes share the same vacuum with Minkowski modes
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Daiqin Su, et al, New Journal of Physics 19, 063017 (2017)



Quantum circuit model: 
accelerated time independent
interaction

Daiqin Su, et al, New Journal of Physics 19, 063017 (2017)

Quantum circuit for an accelerated single-mode squeezer

(Dated: May 11, 2016)

This note is devoted to discuss the quantum circuit model for a uniformly accelerated single-mode squeezer. We

assume that a uniformly accelerated single-mode squeezer in the right Rindler wedge squeeze a localised, narrow

bandwidth Rindler mode g(!). Fig. (1) is an approximate circuit because the single-mode squeezer S0 does not

squeeze single-frequency modes. We draw it here just for a better understanding of the calculations.

FIG. 1: Single frequency circuit

The relation between two Rindler modes {ˆbR! ,ˆbL!} and two Unruh modes {ĉ!, ˆd!} are

ˆbR! = cosh(r!)ĉ! + sinh(r!) ˆd
†
!,

ˆbL! = cosh(r!) ˆd! + sinh(r!)ĉ
†
!. (1)

The single-mode squeezer S0 squeezes a localised wave packet mode

ˆbR(g) =

Z
d! g(!)ˆbR! . (2)

For example, we can choose a Gaussian wave packet

g(!) =

✓
1

2⇡�2

◆1/4

exp

⇢
� (! � !0)

2

4�2

�
e�i!vc

(3)

where !0 is the central frequency, � is the bandwidth, and vc is the central position of the Gaussian mode. If we

assume that g(!) is a very narrow bandwidth Gaussian wave packet, !0 � �, then according to Eqs. (1) and (2) we

have

ˆbR(g) =

Z
d! g(!) cosh(r!)ĉ! +

Z
d! g(!) sinh(r!) ˆd

†
!

⇡ cosh(r0)

Z
d! g(!)ĉ! + sinh(r0)

Z
d! g(!) ˆd†!

⇡ cosh(r0)ĉ(g) + sinh(r0) ˆd
†
(g⇤), (4)

where tanh(rc) = e�⇡!0/a
and we have defined localised Unruh modes

ĉ(g) ⌘
Z

d! g(!)ĉ!, ˆd(g⇤) ⌘
Z

d! g⇤(!) ˆd!. (5)

The corresponding localised Rindler mode in the left Rindler wedge is

ˆbL(g⇤) ⇡ cosh(r0) ˆd(g
⇤
) + sinh(r0)ĉ

†
(g) (6)

The single-mode squeezer squeezes the localised Rindler mode

ˆbR(g) at phase � = 0,

ˆb0R(g) = cosh(r)ˆbR(g)� sinh(r)ˆbR†
(g) (7)
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FIG. 1: Penrose diagram of Minkowski spacetime. I0 is the spatial infinity, I� and I+ are the past and future infinities, I �
and I +

are the past and future null infinities. A uniformly accelerated object follows the black worldline. Interactions between the accelerated

object and the field are localized in Rindler time, represented by the shaded region.

excitation probability of an ideal, inertial, 2-level system of resonant frequency ⌦, coupled weakly to the field, is

proportional to hN̂ki [16]. We can model a finite bandwidth detector via the operator N̂
�k =

R k
o

+�k
k
o

��k dk â

†
kâk. If the

bandwidth of the detector is much larger than that of the mode under consideration then we can extend the limits
of integration to ±1 and so define N̂ =

R
dk â

†
kâk. Note that by definition h0|N̂ |0i = 0 for the Minkowski vacuum

state, |0i.
In order to characterize the state of a particular field mode we use homodyne tomography [17]. In homodyne

tomography, the Wigner function [16] of the state is reconstructed from measurements of the moments of quadrature
amplitudes via homodyne detection. For Gaussian states it is su�cient to measure and analyse only the first and
second order moments [18]. In homodyne detection [19], a weak signal field and a strong local oscillator are coherently
combined and measured with broad-band detection as discussed above. For simplicity and to stay within the 1+1,
scalar field paradigm, we specifically use self-homodyne detection here. In self-homodyne detection, the signal field
is displaced by a strong local oscillator directly, and the output field is detected. Assume that the signal field mode
operator is â =

R
dkf(k)âk and the local oscillator is a strong coherent state |↵i, prepared in the same field mode

(characterized by f(k)) with ↵ a complex number, ↵ = |↵|ei�, and |↵| � 1. The photon number operator can be
shown to be

N̂(�) ⇡ |↵|2 + |↵|X̂(�) (1)

where X̂(�) = âe

�i� + â

†
e

i� is the quadrature amplitude of the signal field and a term not multiplied by |↵| has been
neglected as small. As a reference we can also consider the operator

N̂

0

⇡ |↵|2 + |↵|X̂v (2)

representing the situation where the signal is not imposed and so v̂ represents the mode when it is prepared in the
vacuum state. Hence the average quadrature amplitude of the field is given by

hX̂(�)i = hN̂(�)i � hN̂
0

iq
hN̂

0

i
(3)

where we have used hX̂vi = 0. Its variance is given by

�
�X(�)

�
2

=

�
�N(�)

�
2

hN̂
0

i
. (4)

For the Gaussian states considered here this will be su�cient to completely characterize them. We wish to apply
this technique to the output state from the interactions between a uniformly accelerated object and the scalar field.
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†
kâk. If the

bandwidth of the detector is much larger than that of the mode under consideration then we can extend the limits
of integration to ±1 and so define N̂ =

R
dk â
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In order to characterize the state of a particular field mode we use homodyne tomography [17]. In homodyne

tomography, the Wigner function [16] of the state is reconstructed from measurements of the moments of quadrature
amplitudes via homodyne detection. For Gaussian states it is su�cient to measure and analyse only the first and
second order moments [18]. In homodyne detection [19], a weak signal field and a strong local oscillator are coherently
combined and measured with broad-band detection as discussed above. For simplicity and to stay within the 1+1,
scalar field paradigm, we specifically use self-homodyne detection here. In self-homodyne detection, the signal field
is displaced by a strong local oscillator directly, and the output field is detected. Assume that the signal field mode
operator is â =

R
dkf(k)âk and the local oscillator is a strong coherent state |↵i, prepared in the same field mode

(characterized by f(k)) with ↵ a complex number, ↵ = |↵|ei�, and |↵| � 1. The photon number operator can be
shown to be
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where X̂(�) = âe

�i� + â

†
e

i� is the quadrature amplitude of the signal field and a term not multiplied by |↵| has been
neglected as small. As a reference we can also consider the operator
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0

⇡ |↵|2 + |↵|X̂v (2)

representing the situation where the signal is not imposed and so v̂ represents the mode when it is prepared in the
vacuum state. Hence the average quadrature amplitude of the field is given by
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excitation probability of an ideal, inertial, 2-level system of resonant frequency ⌦, coupled weakly to the field, is
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In order to characterize the state of a particular field mode we use homodyne tomography [17]. In homodyne

tomography, the Wigner function [16] of the state is reconstructed from measurements of the moments of quadrature
amplitudes via homodyne detection. For Gaussian states it is su�cient to measure and analyse only the first and
second order moments [18]. In homodyne detection [19], a weak signal field and a strong local oscillator are coherently
combined and measured with broad-band detection as discussed above. For simplicity and to stay within the 1+1,
scalar field paradigm, we specifically use self-homodyne detection here. In self-homodyne detection, the signal field
is displaced by a strong local oscillator directly, and the output field is detected. Assume that the signal field mode
operator is â =
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dkf(k)âk and the local oscillator is a strong coherent state |↵i, prepared in the same field mode
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excitation probability of an ideal, inertial, 2-level system of resonant frequency ⌦, coupled weakly to the field, is
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tomography, the Wigner function [16] of the state is reconstructed from measurements of the moments of quadrature
amplitudes via homodyne detection. For Gaussian states it is su�cient to measure and analyse only the first and
second order moments [18]. In homodyne detection [19], a weak signal field and a strong local oscillator are coherently
combined and measured with broad-band detection as discussed above. For simplicity and to stay within the 1+1,
scalar field paradigm, we specifically use self-homodyne detection here. In self-homodyne detection, the signal field
is displaced by a strong local oscillator directly, and the output field is detected. Assume that the signal field mode
operator is â =
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excitation probability of an ideal, inertial, 2-level system of resonant frequency ⌦, coupled weakly to the field, is
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†
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In order to characterize the state of a particular field mode we use homodyne tomography [17]. In homodyne

tomography, the Wigner function [16] of the state is reconstructed from measurements of the moments of quadrature
amplitudes via homodyne detection. For Gaussian states it is su�cient to measure and analyse only the first and
second order moments [18]. In homodyne detection [19], a weak signal field and a strong local oscillator are coherently
combined and measured with broad-band detection as discussed above. For simplicity and to stay within the 1+1,
scalar field paradigm, we specifically use self-homodyne detection here. In self-homodyne detection, the signal field
is displaced by a strong local oscillator directly, and the output field is detected. Assume that the signal field mode
operator is â =

R
dkf(k)âk and the local oscillator is a strong coherent state |↵i, prepared in the same field mode

(characterized by f(k)) with ↵ a complex number, ↵ = |↵|ei�, and |↵| � 1. The photon number operator can be
shown to be

N̂(�) ⇡ |↵|2 + |↵|X̂(�) (1)

where X̂(�) = âe

�i� + â

†
e

i� is the quadrature amplitude of the signal field and a term not multiplied by |↵| has been
neglected as small. As a reference we can also consider the operator

N̂

0

⇡ |↵|2 + |↵|X̂v (2)

representing the situation where the signal is not imposed and so v̂ represents the mode when it is prepared in the
vacuum state. Hence the average quadrature amplitude of the field is given by

hX̂(�)i = hN̂(�)i � hN̂
0

iq
hN̂

0

i
(3)

where we have used hX̂vi = 0. Its variance is given by

�
�X(�)

�
2

=

�
�N(�)

�
2

hN̂
0

i
. (4)

For the Gaussian states considered here this will be su�cient to completely characterize them. We wish to apply
this technique to the output state from the interactions between a uniformly accelerated object and the scalar field.
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Decoherence of Entanglement
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where ⌫̃� is the smallest symplectic eigenvalue of the partially transposed state,

⌫̃� = e

�2r + 4Ic(Ic � 1)(e�r � 1)2. (21)

When ⌫̃� < 1 (EN > 0), there exists entanglement between the left-moving and right-moving modes; when ⌫̃� � 1
(EN = 0), the left-moving and right-moving modes are not entangled. When Ic = 1 the covariance matrix (equation
18) is that of a pure two-mode squeezed state and the entanglement (equation 21) is maximised. However, when
Ic > 1 the covariance matrix becomes decohered (mixed) and the entanglement drops, eventually disappearing. Fig.
6 shows the logarithmic negativity as a function of the squeezing factor r and the central frequency !
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in the narrow
bandwidth limit. The critical curve ⌫̃� = 1, dividing the entanglement and no entanglement regions, is determined
by equation (16).
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FIG. 6: Logarithmic negativity of the output state as a function of the squeezing factor r and the central frequency !0 in the narrow

bandwidth limit.

Conclusion

The decoherence e↵ect we describe here is a previously unnoticed consequence of the transformation from the bipartite
Hilbert space of the Rindler and Unruh modes, to the single Hilbert space of the Minkowski modes. Notice that in
equation (9) any direct phase relationship between the left and right Unruh modes is lost in the construction of
the Minkowski number operator. This means that interactions which lead to entanglement between the left and
right Unruh modes, as occurs with the accelerated squeezer and the entangler, will in general appear as decoherence
with respect to measurements by inertial observers. In contrast, coherent state signals do not produce Unruh mode
entanglement and so no decoherence is observed for such signals.

We have shown that single and two-mode mode unitary squeezing operations in an accelerated frame are in general
detected as decohered states by inertial observers. As we noted in the introduction, the standard Unruh e↵ect can
be purified if a mirror image accelerated observer is introduced. Here we find that a mirror image accelerated source
is required to purify the state detected by the inertial observer. In particular, for the narrow band case, only if the

mirror image source displaces the state by � = 2
p

I
c

(I
c

�1)

2I
c

�1

↵

⇤, in phase with the original accelerated source, then the
inertial detectors will see pure states in both the squeezer and entangler cases. Details of this calculation are given in
the appendix.

We believe the decoherence e↵ect has significance for understanding quantum e↵ects in gravitational systems. For
example, our system can be viewed as a toy model for the creation and eventual evaporation of a black-hole. We
begin in the far past in a pure Minkowski vacuum state, before the formation of the black-hole. In the intermediate
epoch accelerated observers, representing observers close to the black-hole, interact with the field modes. Finally in
the far-future the black-hole has evaporated leaving flat space, however the field is left in a mixed state with respect
to inertial observers. This may indicate a new direction for understanding the black-hole information paradox.

The accelerations required to generate this decoherence e↵ect are well beyond those that can be physically produced
in the lab. However, such accelerations do occur naturally in many regions of the universe. In addition the equivalence
between acceleration and time dependent e↵ects [27] may enable laboratory tests, especially at micro-wave frequencies
[28]. We also note that simulation of these e↵ects using optical squeezing is possible with current technology and
would allow an experimental investigation of analogues to the decoherence e↵ect described here that may be of interest
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state superpositions are removed and the state becomes decomposable into a mixture of coherent states. Fig. 4 shows
an example of the phase space representation of the quadrature amplitude. In the narrow bandwidth limit, we use
the approximate relation between Ic and !

0

to find the distribution of minimum quadrature variance in terms of r
and !

0

, as shown in Fig. 5. A critical curve, which is determined by

2⇡!
0

a

= ln

✓p
1 + coth(r/2) + 1p
1 + coth(r/2)� 1

◆
, (16)

separates the squeezing region and no squeezing region. When r ! 1, 2⇡!
0

/a ! 2 ln(
p
2 + 1) ⇡ 1.763. Below this

value, one can always make the output state classical by increasing the single-mode squeezing factor r.

Vmin = 1.0
0.8

0.5

0.3
Squeezing

No Squeezing

2.0

4.0

12.0

r

2⇡
!
0
/a

FIG. 5: Distribution of minimum quadrature variance of the output state as a function of single-mode squeezing factor r and the central

frequency !0 in the narrow bandwidth limit. A critical curve along which Vmin = 1.0 separates the squeezing region and no squeezing

region. In the squeezing region Vmin < 1.0, while in the no squeezing region Vmin > 1.0.

Entanglement results

We generalize the above calculation to a uniformly accelerated two-mode squeezer in the right Rindler wedge that
couples the left-moving and right-moving Rindler modes. The two-mode squeezing operator is defined as [16]

Ŝ

2

(r) = exp

⇢
r

✓
b̂

R†
1g b̂

R†
2g � b̂

R
1g b̂

R
2g

◆�
, (17)

where the subscripts “1” and “2” represent the left-moving and right-moving moving modes, respectively. Here r is
the squeezing factor and is assumed to be real. The output field includes the left-moving and right-moving parts. To
have full information about the output state, one needs to measure the states of the left-moving and right-moving
modes, as well as the correlations between them.

We add two displacements, with amplitudes ↵
1

= |↵
1

|ei�1 and ↵

2

= |↵
2

|ei�2 , after the two-mode squeezer in order
to perform homodyne detection, the former for the left-moving mode and the latter for the right-moving mode. We
find that the expectation values of the quadrature amplitudes X̂

1

(�
1

) and X̂

2

(�
2

) are zero. The covariance matrix
[18] of the output state is

V =

0

B@

A 0 B 0
0 A 0 �B
B 0 A 0
0 �B 0 A

1

CA , (18)

where

A = (2Ic � 1)2 cosh(2r)� 4Ic(Ic � 1)(2 cosh r � 1),

B = 2 sinh r
⇥
(2Ic � 1)2 cosh r � 4Ic(Ic � 1)

⇤
. (19)

From the covariance matrix (18), one can derive the logarithmic negativity as [18]

EN = max[0,� log
2

(⌫̃�)], (20)
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