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' What are Gravitational Waves?

= Gravitational waves are predicted by GR (Einstein, 1918)
= Propagate with the speed of light

= Quadrupole waves, two polarisations

= Change distance between free-falling masses

= H. Bondi (1957): GW are physical: they carry
energy, momentum and angular momentum

= Small coupling to matter, hence almost no
absorption or scattering in the Universe

= Small amplitude, small effects
» |deal tool to observe

- distant objects
- centre of galaxies
- Black Holes

- early Universe
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Sources of gravitational waves

= Any mass distribution that is accelerated in a non-spherically
symmetric way (waving hands, running trains, planets in orbit,

..)

= Large masses necessary to get any measurable signal
— Neutron star binary system
- Supernovae

- Black Holes
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Gravitational waves

Crab nebula, HST NGC 4261, HST
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LISA

= LISA is a space-borne interferometric gravitational-wave detector
= Designed to detect GW from

— coalescing massive black hole binaries
— compact galactic binaries

— capture events

= Joint ESA/NASA mission
= Launch ~2018
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Science objectives of LISA

. * Understand the formation of massive black holes

& - Trace the growth and merger history of massive black holes and
their host galaxies

= Explore stellar populations and dynamics in galactic nuclei

= Survey compact stellar-mass binaries and study the
morphology of the Galaxy

= Confront General Relativity with observations
= Probe new physics and cosmology with gravitational waves

= Search for unforeseen sources of gravitational waves




f
Z=
=
g

P

[

=

[

| What are the sources?

= Only a space borne detector can overcome the seismic barrier

10—18_
10—19_
Black Hole Binary
Coalescence
10—20_
N Black Hole
c . SN\
-E .Formatlon
A 10721 @ SVBH s
Binary
1072
107
10—24 | | I | I | I | |
10" 10° 102 10" 10° 10" 162 10° 10

Frequency (Hz)

("




' LISA Mission Concept

= Measure the change of distance between free falling proof
masses

= Interferometric distance measurement
- Use lasers
- Use large distances to enhance the effect of the GW

= Ensure that proof masses follow gravitational orbits
- Avoid orbit control

- Suppress non-gravitational forces (electrostatic, magnetic, ...)
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LISA Mission Concept

= Cluster of 3 spacecraft in a heliocentric orbit

- Spacecraft shield the test masses from external forces (solar wind,
radiation pressure)

- Allows measurement of amplitude and polarisation of GW
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. LISA Mission Concept

= Cluster of 3 spacecraft in a heliocentric orbit
= Trailing the Earth by 20° (50 million kilometres)

- Reducing the influence of the Earth-Moon system on the orbits

- Keeping the communication requirements (relatively) standard
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. LISA Mission Concept
. = Cluster of 3 spacecraft in a heliocentric orbit
= Trailing the Earth by 20° (50 million kilometres)

= Equilateral triangle with 5 million kilometres arm length

- Results in easily measurable pathlength variations

- Orbit is still stable enough to allow for mission duration >5years




' LISA Mission Concept
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Cluster of 3 spacecraft in a heliocentric orbit
Trailing the Earth by 20° (50 million kilometres)

Equilateral triangle with 5 million kilometres arm length

Inclined with respect to the ecliptic by 60°

- Required by orbital mechanics
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The LISA Orbit
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= Constellation counter-rotates during the course of one year.
= No additional orbit control necessary.

= Constellation forms an “almost rigid” triangle.
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® Science objectives of LISA

» Understand the formation of massive black holes

= Trace the growth and merger history of massive black holes and
their host galaxies

= Explore stellar populations and dynamics in galactic nuclei

= Survey compact stellar-mass binaries and study the
morphology of the Galaxy

= Confront General Relativity with observations
= Probe new physics and cosmology with gravitational waves

= Search for unforeseen sources of gravitational waves




i Galactic binaries
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= Over 30 Million compact binaries in our galaxy
- Learning about the structure of our Galaxy

= Extra-galactic sources (equivalent to Olbers’ paradox)
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LISA

LISA Verification Binaries
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(mHz)  (10%)
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WD 1704+481 0.14 40
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. LISA Verification Binaries
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® Science objectives of LISA

= Understand the formation of massive black holes

= Trace the growth and merger history of massive black holes and
their host galaxies

= Explore stellar populations and dynamics in galactic nuclei

= Survey compact stellar-mass binaries and study the
morphology of the Galaxy

= Confront General Relativity with observations
= Probe new physics and cosmology with gravitational waves

= Search for unforeseen sources of gravitational waves
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Massive black hole (MBH) binaries

= MBH found at centre of most
galaxies

= Most galaxies merge one or
more times
- MBH binaries

= MBH mergers trace galaxy
mergers

= MBH mergers are strong
sources of gravitational waves

= These GWs are detectable by LISA to z ~ 30 or more
— Most signals will occur around z~10

= Expect to see 10s — 100s of events per year

= Observing these gravitational waves gives the masses and spins
of the MBHs to high precision and probes the early stages of
structure formation
. &




LISA

-

¢=esa
Evidence for MBH Binaries

= Abell 400

- Separation ~ 7600 pc
= NGC 6240

- Separation ~ 1000 pc
= 0402+379

- Separation ~ 7.3 pc

'X-ray: NASA/CXC/AIfA/D.Hudson & (NASA/CXC/MPE/S.Komossa et al. ) (Rodr/guef et al. ApJ, in press, astro-

-Reiprich et al; Radio:NRAO/VLA/NRL) ph/06

4042)
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* MBH mergers

. = MBH waveforms constitute a numerical challenge
= Unsolved for over 40 years

Merger

Inspiral

Ringdown
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Kip Thorne, Caltech
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' MBH signals

= Recent progress in numerical relativity allows to
accurately assess the waveforms in all three phases
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. GW Signals from MBH mergers
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a - MBH mergers emit ~4%

percent of their rest mass
in GW.

= Very strong signals:
1023L,,,

= LISA will observe MBH
mergers out to z~30.

Baker, NASA GSFC, (Visualizations by Chris Henze, NASA/Ames)
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Mergers of Massive Black Holes

= Signal-to-noise of 1000 or more allows LISA to perform precision
tests of General Relativity at ultra-high field strengths

20,
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® Science objectives of LISA

» Understand the formation of massive black holes

= Trace the growth and merger history of massive black holes and
their host galaxies

= Explore stellar populations and dynamics in galactic nuclei

= Survey compact stellar-mass binaries and study the
morphology of the Galaxy

= Confront General Relativity with observations
= Probe new physics and cosmology with gravitational waves

= Search for unforeseen sources of gravitational waves




At the Edge of a Black Hole
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= By observing 10,000 or more orbits of a compact object as
it inspirals into a massive black hole (MBH), LISA can map
with superb precision the space-time geometry near the
black hole.

= Allows tests of many predictions of General Relativity
including the “no hair” theorem.
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LISA
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Extreme mass-ratio sources G. Woan

Quasi-periodic orbits showing a e - _.
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complex “zoom-whirl” structure

inspiral Periastron precession “Zoom-Whirl" effect
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Spin-Orbit coupling Evolution of inclination angle L. Barack

eccentricity = 0.7, viewed from 0 = 90 (top), 60°, 300, 0 (bottom)
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= Stellar motions in the
vicinity of Sgr A".

*The orbital
accelerations of stars
close to the Galactic
centre allow placing
constraints on the
position and mass of
the central super-
massive black hole.

=EMRI are not

- observable directly,
but statistics and

physics allow for

inspirals.

-

UCLA Galactic Center Group

LISA 28
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Probing Strong Curvature with EMRIs

B. Schutz

= EMRIs are one of LISA’s strongest tools for studying fundamental

physics, and they set the LISA noise requirement at mid-range
frequencies.

= Very sensitive because of large number of cycles: chirp time

5 M / M\ *

chirp ™ %? R with n = m/M

= Null test of uniqueness of Kerr metric: fit EMRI waveforms to signal,
determine if errors are consistent with noise/confusion background.

= Testing for non-Kerr metric: existing studies (Glampedakis & Babak
2005, Barak & Cutler 2007, Barausse et al 2007) examine how EMRIs

could test if metric is non-Kerr but still GR: eg due to accretion disk
or tidally distorting nearby body.

- They do not look for evidence for non-GR theories, because they assume GR
to generate waveforms in the distorted metric.
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Using EMRIs to Test Gravity Theory B. Schutz

= To compare GR with an alternative theory, need to compute EMRI
waveforms self-consistently in the other theory, including EOM.

- For Hulse-Taylor Binary Pulsar, the limits on Brans-Dicke w come from a
calculation that includes scalar radiation and its back-reaction (Will).

- In Hulse-Taylor system, scalar effects are anomalously small (test anomalously
weak) because stars have nearly equal mass, reducing scalar dipole radiation.

= Black holes radiate away massless fields when formed, so in
Brans-Dicke, BHs are the same as in GR.

- EMRI signals from stellar-mass BHs falling into SMBHSs will not test such
theories. Weaker EMRI signals from NS’s or WD cores of giant stars will provide

tests.

= We lack a “Parametrized Post Kerr” framework that includes
other theories — hard to quantify the meaning of a null result
when looking for violations of GR.

= Dispersion

- Fitting inspiral signal to PN model, with high SNR, may reveal unexpected
phasing if higher frequencies travel faster than lower (graviton mass).

- For inspirals or EMRIs, orbital plane might show anomalous precession due to
parity failure (right- and left-hand polarizations propagate differently in some @
string theory models). 30




¢-esa
Measuring Hubble Relation B. Schutz

= Any binary system that chirps during observation has intrinsic distance
information in signal. Chirp time measures chirp mass M = (m;m,)3/5/
(m4+m,)"5. Amplitude depends just on M/D,, where D, is the luminosity
distance, so measuring it gives D,.

= Converting detector response into signal amplitude requires measurement
of polarization, sky position. Strong covariance of errors among these and
the chirp mass.

= Getting the redshift normally requires identifying the host galaxy or cluster
and obtaining an optical redshift. Small error box is key to this.

= |ldentification reduces error in D,.

= Weak lensing produces random errors in D,. Not clear how much can be
removed by lensing studies of signal field.

= Using EMRI spirals, Hogan & McLeod (2007) show that LISA can measure H,
to 1% accuracy (needs 20 events to z = 0.5).
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g Conclusions

= LISA is a mission to detect and observe gravitational waves

- Gravitational waves are predicted by any “reasonable” theory of gravity, yet not
directly detected.

- Gravitational waves are a tool for astronomers, astrophysicists and
cosmologists

= LISA will address important questions in fundamental physics,
astrophysics and cosmology.

- Precision tests of GR
- Nature of objects in the center of galaxies
— History and evolution of galaxies

- Structure formation in the Universe
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' Conclusions

= LISA is a mission to detect and observe gravitational waves

= LISA will address important questions in fundamental physics,
astrophysics and cosmology.

= Joint mission, equally shared between ESA and NASA
- Technology development ongoing

- LISA Pathfinder as a technology demonstrator will launch in 2010
- LISA will launch in the timeframe of 2018

= By 2020, we will be able to look at...
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Gravitational Wave Sky
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