

LISA and capture sources

O. Jennrich LISA Project Scientist

What are Gravitational Waves?

- Gravitational waves are predicted by GR (Einstein, 1918)
- Propagate with the speed of light
- Quadrupole waves, two polarisations
- Change distance between free-falling masses
- H. Bondi (1957): GW are physical: they carry energy, momentum and angular momentum
- Small coupling to matter, hence almost no absorption or scattering in the Universe
- Small amplitude, small effects
- Ideal tool to observe
 - distant objects
 - centre of galaxies
 - Black Holes
 - early Universe

Sources of gravitational waves

- Any mass distribution that is accelerated in a non-spherically symmetric way (waving hands, running trains, planets in orbit, ...)
- Large masses necessary to get any measurable signal
 - Neutron star binary system
 - Supernovae
 - Black Holes

Crab nebula, HST

NGC 4261, HST

LISA

LISA is a space-borne interferometric gravitational-wave detector

Designed to detect GW from

- coalescing massive black hole binaries
- compact galactic binaries
- capture events
- Joint ESA/NASA mission
- Launch ~2018

Science objectives of LISA

- Understand the formation of massive black holes
- Trace the growth and merger history of massive black holes and their host galaxies
- Explore stellar populations and dynamics in galactic nuclei
- Survey compact stellar-mass binaries and study the morphology of the Galaxy
- Confront General Relativity with observations
- Probe new physics and cosmology with gravitational waves
- Search for unforeseen sources of gravitational waves

- Measure the change of distance between free falling proof masses
- Interferometric distance measurement
 - Use lasers
 - Use large distances to enhance the effect of the GW
- Ensure that proof masses follow gravitational orbits
 - Avoid orbit control
 - Suppress non-gravitational forces (electrostatic, magnetic, ...)

- Cluster of 3 spacecraft in a heliocentric orbit
 - Spacecraft shield the test masses from external forces (solar wind, radiation pressure)
 - Allows measurement of amplitude and polarisation of GW

Cluster of 3 spacecraft in a heliocentric orbit

Trailing the Earth by 20° (50 million kilometres)

- Reducing the influence of the Earth-Moon system on the orbits
- Keeping the communication requirements (relatively) standard

- Cluster of 3 spacecraft in a heliocentric orbit
- Trailing the Earth by 20° (50 million kilometres)
- Equilateral triangle with 5 million kilometres arm length
 - Results in easily measurable pathlength variations
 - Orbit is still stable enough to allow for mission duration >5years

- Cluster of 3 spacecraft in a heliocentric orbit
- Trailing the Earth by 20° (50 million kilometres)
- Equilateral triangle with 5 million kilometres arm length
- Inclined with respect to the ecliptic by 60°
 - Required by orbital mechanics

Science objectives of LISA

- Understand the formation of massive black holes
- Trace the growth and merger history of massive black holes and their host galaxies
- Explore stellar populations and dynamics in galactic nuclei
- Survey compact stellar-mass binaries and study the morphology of the Galaxy
- Confront General Relativity with observations
- Probe new physics and cosmology with gravitational waves
- Search for unforeseen sources of gravitational waves

Galactic binaries

- Over 30 Million compact binaries in our galaxy
 - Learning about the structure of our Galaxy
- Extra-galactic sources (equivalent to Olbers' paradox)

LISA Verification Binaries

0.38 0.16	40	AM CVn			(10 ⁻²³)
0.16			RXJ0806.3+1527	6.2	40
	20		RXJ1914+245	3.5	60
0.14	40	ř.	KUV05184-0939	3,2	9
0.14	> 20		AM CVn	9 4	20
24 0126	60		HP Lib	1 79	20
52 0.24	100		CR Boo	1.36	10
3.0	2		V803 Cen 4	1.24	10
0.79	0.6		Cel ^e Eri	1.16	4
0.105	60	2	GP ©om	0.72	3
	0 0.14 0 0.26 52 0.24 3.0 0.79 0.10	0.14 > 20 $0.14 > 20$ $0.26 = 60$ $52 = 0.24 = 100$ $3.0 = 2$ $0.79 = 0.6$ $0.105 = 60$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.14 > 20 AM CVn 21 0.26 60 HP Lib 52 0.24 100 CR Boo 3.0 2 V803 Cen H 0.79 0.6 GP 20m 0.105 60 GP 20m	0 0.14 > 20 AM CVn 194 21 0.26 60 HP Lib 129 52 0.24 100 CR Boo 1.36 3.0 2 V803 Cen 1.24 0.79 0.6 GP 20m 0.72

Science objectives of LISA

- Understand the formation of massive black holes
- Trace the growth and merger history of massive black holes and their host galaxies
- Explore stellar populations and dynamics in galactic nuclei
- Survey compact stellar-mass binaries and study the morphology of the Galaxy
- Confront General Relativity with observations
- Probe new physics and cosmology with gravitational waves
- Search for unforeseen sources of gravitational waves

Massive black hole (MBH) binaries

- MBH found at centre of most galaxies
- Most galaxies merge one or more times
 - \rightarrow MBH binaries
- MBH mergers trace galaxy mergers
- MBH mergers are strong sources of gravitational waves

- These GWs are detectable by LISA to z ~ 30 or more
 - Most signals will occur around z~10
- Expect to see 10s 100s of events per year
- Observing these gravitational waves gives the masses and spins of the MBHs to high precision and probes the early stages of structure formation

Evidence for MBH Binaries

- Abell 400
 - Separation ~ 7600 pc
- NGC 6240
 - Separation ~ 1000 pc
- 0402+379
 - Separation ~ 7.3 pc

(X-ray: NASA/CXC/AlfA/D.Hudson & T.Reiprich et al; Radio:NRAO/VLA/NRL)

(NASA/CXC/MPE/S.Komossa et al.)

MBH mergers

MBH waveforms constitute a numerical challenge

MBH signals

 Recent progress in numerical relativity allows to accurately assess the waveforms in all three phases

GW Signals from MBH mergers

- MBH mergers emit ~4% percent of their rest mass in GW.
- Very strong signals: 10²³L_{sun}
- LISA will observe MBH mergers out to z~30.

Mergers of Massive Black Holes

 Signal-to-noise of 1000 or more allows LISA to perform precision tests of General Relativity at ultra-high field strengths

Science objectives of LISA

- Understand the formation of massive black holes
- Trace the growth and merger history of massive black holes and their host galaxies
- Explore stellar populations and dynamics in galactic nuclei
- Survey compact stellar-mass binaries and study the morphology of the Galaxy
- Confront General Relativity with observations
- Probe new physics and cosmology with gravitational waves
- Search for unforeseen sources of gravitational waves

At the Edge of a Black Hole

- By observing 10,000 or more orbits of a compact object as it inspirals into a massive black hole (MBH), LISA can map with superb precision the space-time geometry near the black hole.
- Allows tests of many predictions of General Relativity including the "no hair" theorem.

Direct Evidence for EMRI?

- Stellar motions in the vicinity of Sgr A*.
- The orbital accelerations of stars close to the Galactic centre allow placing constraints on the position and mass of the central supermassive black hole.
- EMRI are not observable directly, but statistics and physics allow for inspirals.

UCLA Galactic Center Group

Probing Strong Curvature with EMRIs

B Schutz

- EMRIs are one of LISA's strongest tools for studying fundamental physics, and they set the LISA noise requirement at mid-range frequencies.
- Very sensitive because of large number of cycles: chirp time

$$t_{\rm chirp} \sim \frac{5}{96} \frac{M}{\eta} \left(\frac{M}{R}\right)^{-4}$$
 with $\eta = m/M$

- Null test of uniqueness of Kerr metric: fit EMRI waveforms to signal, determine if errors are consistent with noise/confusion background.
- Testing for non-Kerr metric: existing studies (Glampedakis & Babak 2005, Barak & Cutler 2007, Barausse et al 2007) examine how EMRIs could test if metric is non-Kerr but still GR: eg due to accretion disk or tidally distorting nearby body.
 - They do not look for evidence for non-GR theories, because they assume GR to generate waveforms in the distorted metric.

Using EMRIs to Test Gravity Theory

- To compare GR with an alternative theory, need to compute EMRI waveforms self-consistently in the other theory, including EOM.
 - For Hulse-Taylor Binary Pulsar, the limits on Brans-Dicke ω come from a calculation that includes scalar radiation and its back-reaction (Will).
 - In Hulse-Taylor system, scalar effects are anomalously small (test anomalously weak) because stars have nearly equal mass, reducing scalar dipole radiation.
- Black holes radiate away massless fields when formed, so in Brans-Dicke, BHs are the same as in GR.
 - EMRI signals from stellar-mass BHs falling into SMBHs will *not* test such theories. Weaker EMRI signals from NS's or WD cores of giant stars will provide tests.
- We lack a "Parametrized Post Kerr" framework that includes other theories – hard to quantify the meaning of a null result when looking for violations of GR.

Dispersion

- Fitting inspiral signal to PN model, with high SNR, may reveal unexpected phasing if higher frequencies travel faster than lower (graviton mass).
- For inspirals or EMRIs, orbital plane might show anomalous precession due to parity failure (right- and left-hand polarizations propagate differently in some string theory models).

NASA

Measuring Hubble Relation

- Any binary system that chirps during observation has intrinsic distance information in signal. Chirp time measures chirp mass $M = (m_1m_2)^{3/5}/(m_1+m_2)^{1/5}$. Amplitude depends just on M/D_L , where D_L is the luminosity distance, so measuring it gives D_L .
- Converting detector response into signal amplitude requires measurement of polarization, sky position. Strong covariance of errors among these and the chirp mass.
- Getting the redshift normally requires identifying the host galaxy or cluster and obtaining an optical redshift. Small error box is key to this.
- Identification reduces error in *D*_L.
- Weak lensing produces random errors in D_L. Not clear how much can be removed by lensing studies of signal field.
- Using EMRI spirals, Hogan & McLeod (2007) show that LISA can measure H₀ to 1% accuracy (needs 20 events to z = 0.5).

Conclusions

LISA is a mission to detect and observe gravitational waves

- Gravitational waves are predicted by any "reasonable" theory of gravity, yet not directly detected.
- Gravitational waves are a tool for astronomers, astrophysicists and cosmologists
- LISA will address important questions in fundamental physics, astrophysics and cosmology.
 - Precision tests of GR
 - Nature of objects in the center of galaxies
 - History and evolution of galaxies
 - Structure formation in the Universe

Conclusions

- LISA is a mission to detect and observe gravitational waves
- LISA will address important questions in fundamental physics, astrophysics and cosmology.
- Joint mission, equally shared between ESA and NASA
 - Technology development ongoing
 - LISA Pathfinder as a technology demonstrator will launch in 2010
 - LISA will launch in the timeframe of 2018
- By 2020, we will be able to look at...

