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Abstract

We adopt the Nambu–Jona-Lasinio model as a chiral effective model of QCD. The chiral phase
structure is investigated by the non-perturbative renormalization group at finite temperature and
finite density. We included the large-N non-leading diagrams in the beta function and they largely
change the boundary position and shape of phase boundary.

1 Introduction

Understanding the non-perturbative Quantum Chromodynamics (QCD) is one of the important
subjects in elementary particle physics. The phase diagram of QCD at finite temperature and finite
density has been studied intensively. There are various non-perturbative approaches to QCD, such as
the lattice QCD, the mean-field approximation (MFA) and the Schwinger-Dyson equations (SDEs).
However, these mothods have serious problems respectively. The lattice QCD is a powerful method
because of the first-principle caluclation. However, it is difficult to maintain the chiral symmetry on
the lattice field. At finite density, the QCD action has a complex phase due to the quark chemical
potential. Owing to this problem, called the sign problem, the statistical errors of simulation cannot
be controlled easily. The MFA or the SDEs with the ladder approximation have been used in various
types of models. However, these methods have difficulties in the further improvement of the approxi-
mation without which the strong gauge dependences cannot be cured.

We study the non-perturbative properties using the non-perturbative renormalization group (NPRG).
The NPRG method gives us not only the equivalent results to MFA and SDEs in the lowest order
approximation [3], but also the systematic method for improving approximation. We don’t confront
the sign problem at finite density. However, the NPRG breaks gauge symmetry due to inclusion of
the momentum cutoff and also it has the gauge dependences as MFA and SDEs. These problems can
be treated by systematic improvement of approximation. It reported that the gauge dependence has
almost been wiped away by including the non-ladder diagrams to the beta functions [4].

We appliy the NPRG to the Nambu–Jona-Lasinio (NJL) model [9] at finite temperature and finite
density. The NJL model is the effective theory with four-fermi interactions and describes the DχSB
of QCD. We compare the results improved by the NPRG method with the mean field approximation.

2 Non-perturbative Renormalization Group

We briefly explain the basic idea of NPRG [2] in quantum field theory. We divide the degrees of
freedom of quantum field ϕ(p) into the higher modes with |p| > Λ and the lower modes with |p| < Λ
in the Euclidean space. Then we define the effective action Seff [ϕ; Λ], called the Wilsonian effective
action, by integrating out only the higher modes in the path integral

Z =

∫ Λ0

Dϕ e−S0 =

∫ Λ

Dϕ<
∫ Λ0

Λ
Dϕ> e−S0[ϕ<+ϕ>] =

∫ Λ

Dϕ< e−Seff [ϕ<;Λ], (1)

where S0 is the initial (bare) action at the initial cutoff Λ0. The NPRG equation describes the
dependence of the Wilsonian effective action on the cutoff Λ,

∂

∂Λ
Seff [ϕ; Λ] = β[Seff ; Λ]. (2)
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The right hand side of this equation is called the beta function. It is evaluated as the infinitesimal
change of the Wilsonian effective action by infinitesimally lowering the cutoff Λ.

There are various formulations of NPRG equation [5, 6, 7]. In this paper, we adopt the Wetterich
flow equation [7] which is a differential equation for the Legendre effective action with IR cutoff,

∂ΛΓΛ[Φ] =
1

2
STr


[−→
δ

δΦ
ΓΛ[Φ]

←−
δ

δΦ
+RΛ

]−1

· (∂ΛRΛ)

 , (3)

where RΛ is the cutoff profile function which divides the higher and the lower modes of quantum field.
This equation is exact. It describes the development of the effective action starting from the bare
action S0 to the Legendre effective action ΓΛ=0.

The equation (3) is a functional differential equation and we cannot solve it exactly. We have to
make some approximation. First, the effective action is expanded into power series of derivative of
fields,

ΓΛ[ϕ] =

∫
d4x

[
VΛ(ϕ) +

1

2
ZΛ(ϕ)(∂µϕ)

2 +
1

2
YΛ(ϕ)(∂

2ϕ)2 + · · ·
]
, (4)

where VΛ is the effective potential generated and ZΛ and YΛ are the field renormalization factors. This
method is called the derivative expantion. Next, we ignore all the conections to terms with derivatives.
Then the effective action is represented by the effective potential VΛ. This approximation, called the
local potential approximation (LPA) [8], allows us to evaluated the effective action only with the zero
momentum mode of fields. We reduce Eq. (3) to be a partial differential equation for the effective
potential VΛ. Furthermore if the effective potential is spanned by the polynomials of fields, we get
infinitely coupled ordinary differential equations for the expansion coefficients (the coupling constants).

3 Nambu–Jona-Lasinio model

The Lagrangian of the NJL model [9] with one flavor and one color is given by

LNJL = ψ̄i/∂ψ +
G0

2
{(ψ̄ψ)2 + (ψ̄iγ5ψ)

2}. (5)

This Lagrangian is invariant under the chiral U(1) transformation: ψ → eiγ5θψ. The four-fermi
coupling constant G corresponds to the fluctuation of the chiral order parameter: ⟨(ψ̄ψ)2⟩, therefore,
we may conclude the SχSB by divergence of the four-fermi coupling constant at a finite energy scale.

The NJL model at finite temperature and finite density is defined by the following Euclidean bare
action,

S0 =

∫ 1/T

0
dτ

∫
d3x

[
ψ̄/∂ψ + µψ̄γ0ψ −

G0

2
{(ψ̄ψ)2 + (ψ̄iγ5ψ)

2}
]
. (6)

The four-fermi interaction G0 generates the effective four-fermi coupling constant GΛ by quantum
corrections, that is, by driving the infrared cutoff scale to the low energy. The effective action in LPA
is denoted by

ΓΛ =

∫ 1/T

0
dτ

∫
d3x

[
ψ̄/∂ψ + µψ̄γ0ψ −

GΛ

2
{(ψ̄ψ)2 + (ψ̄iγ5ψ)

2}
]
. (7)

We calculate the generated four-fermi interactions through the diagrams in Fig. 1. The first diagram
in the dashed box in Fig. 1 is the so-colled large-N leading term. If we adopt only this term in the
beta function of the four-fermi coupling constant, we get the equivarent results to the MFA or the
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ladder SDEs. Note that we can add the large-N non-leading terms without any difficulty.
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+ + +

Figure 1: Feynman diagrams contributing to the beta function for the four-fermi interactions.

In this study, we use the 3-d optimized cutoff function [10] in Eq. (3),

RΛ(p) = /p

(
Λ

|p| − 1

)
θ(1− p2

Λ2
) = /p r(p/Λ).

At finite temperaure, the time direction momentum is discretized and the integration of it changes
to the Matsubara summation, therefore, the 3-d cutoff function is appropriate to write down the
renormalization group equations in a simple form.

4 Results

The RGEs we solve are the following three simultaneous differential equations,

∂tg̃ = 2g̃ − 1

3
(4I0 − I1),

∂tT̃ = T̃ , (8)

∂tµ̃ = µ̃,

where ∂t = −Λ∂Λ, 1/g̃ = g = GΛΛ
2/4π2, T̃ = T/Λ and µ̃ = µ/Λ. The threshold functions I0(T̃ , µ̃)

and I1(T̃ , µ̃) are given by the large-N leading diagram and the non-leading diagrams respectively in
Fig. 1 , and are expressed as

I0 =

[(
1

2
− n+

)
+

(
1

2
− n−

)
+

∂

∂ω
(n+ + n−)

]∣∣∣∣
ω→1

, (9)

I1 =

[
1

(1 + µ̃)2

(
1

2
− n+

)
+

1

(1− µ̃)2

(
1

2
− n−

)
+

1

1 + µ̃

∂

∂ω
n+ +

1

1− µ̃
∂

∂ω
n−

]∣∣∣∣
ω→1

, (10)

where n± are the Fermi-Dirac distribution functions, n± = (e(ω±µ̃)/T̃ + 1)−1. The large-N non-
leading effect I1 contributes towards the restoration of chiral symmetry. Especially, this effect is large
at low temperature and high density. If temperature vanishes, the threshold function I1 diverges at
µ̃ = 1(µ = Λ) when the cutoff reaches the fermi surface.

We numerically solve the RGEs (8). We may conclude the SχSB when g̃ passes the origin. We
show the RG flows of g̃ of the large-N leading and the non-leaing in Fig. 2 and 3 respectively. We draw
RG flows after g̃ passes the origin. This is justified by the ”Weak solution” method [11] in case of the
large-N leading. Infact, the inverse four-fermi coupling constant g̃ corresponds to the mass squared of
meson fields introduced as the auxiliary fields. In other words, g̃ corresponds to the curvature of the
effective potential of meson field at the origin, and thus, the negative of g̃ means that the curvature of
the effective potential at the origin becomes negative. In this case, the effective potential has a global
minimum at non-zero expectation value of meson field, then the SχSB occurrs. If we directly solve
the RGE for the four-fermi coupling constant, the RG flows stop on the way because the four-fermi
coupling constant diverges at finite t. However, as shown in Fig. 2, some flows go to the negative
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Figure 2: The RG flows of g̃ of the large-N lead-
ing on the g̃ − µ̃ plane at µ/Λ0 = 0.3 and various
temperatures. We set the initial inverse four-fermi
coupling to 0.3.
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Figure 3: The RG flows of g̃ of the large-N non-
leading on the g̃− µ̃ plane at µ/Λ0 = 0.22 and var-
ious temperatures. We set the initial inverse four-
fermi coupling to 0.3.

region, and then comes back to the positive region afterwards. We may regard such turn-over flows
as symmetric phase in case of the large-N leading. In case of the large-N non-leading, it is difficult
to justify of this interpretation. However, we adopt the some criterion here.

The phase diagrams of the large-N leading and the non-leading calculation are shown in Fig. 4.
We can see the drastic difference of behavior of phase boundaries due to the large-N non-leading
effects at low temperature and high density.

5 Summary and Prospects

We study the Nambu–Jona-Lasinio model by using the non-perturbative renormalization group at
finite temperature and finite density. We discuss the difference of the RG flows and phase boundaries
between the mean field approximation results and those including the large-N non-leading effects.
We find that the large-N non-leading effects become large and contribute to the restoration of chiral
symmetry at low temperture and high density.

However, this analysis tells us only second-order phase transition because we evaluate only the
RG flow of the four-fermi coupling constant. In other words, we see the behaivor of the curvature
of the mesonic effective potential at the origin only, and therefore, we overlook the possibility of the
first-order transitions. We should bosonize the four-fermi interactions [3, 12, 13] or treat total mass
function [11] in order to evaluate the order of phase transition.
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