O(D,D) Covariant Noether Currents and Global Charges in Double Field Theory

Yuho Sakatani

Seoul National University (SNU), Institute for Basic Sciences (IBS)

based on arXiv:1507.07545, to appear in JHEP, with J-H. Park (Sogang U.), S-J. Rey, W. Rim (SNU, IBS)

YITP workshop, 12 Nov. 2015

Motivation

Double Field Theory (DFT)

<u>DFT</u>: manifestly O(*D*,*D*)-covariant formulation of Supergravity

Standard coords. x^{μ} in *D*-dims.

Dual coords. $ilde x_\mu$ also have $extcolor{D}$ -dims.

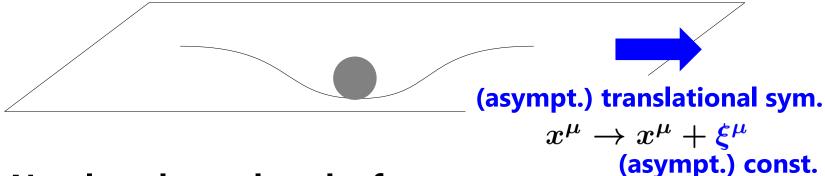
"Gravitational" theory in 2D-dimemsions.

Formal aspects of DFT have been studied in detail, but the applications are not studied well.

We study Noether currents in DFT.

ADM momenta in General Relativity

Asymptotically Flat spacetime



The Noether charge has the form,

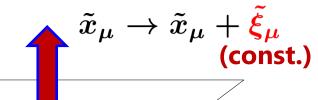
[lyer, Wald, 1994]

$$Q[m{\xi}]=\int (\mathrm{d}^{D-2}x)_{\mu
u}\,\sqrt{-G}\,ig(K^{\mu
u}[m{\xi}]+2\,m{\xi}^{[\mu}B^{
u]}ig)\,.$$
 "Komar potential" $K^{\mu
u}[m{\xi}]\equiv -2D^{[\mu}m{\xi}^{
u]}$ (general covariant)

ADM momenta : $P_{\mu}^{
m ADM} \equiv Q[\partial_{\mu}]$.

ADM momenta in DFT (1/2)

Asymptotically Flat Doubled Spacetime



(asympt.) translational sym.

$$x^{\mu}
ightarrow x^{\mu} + \xi^{\mu}$$
 (const.)

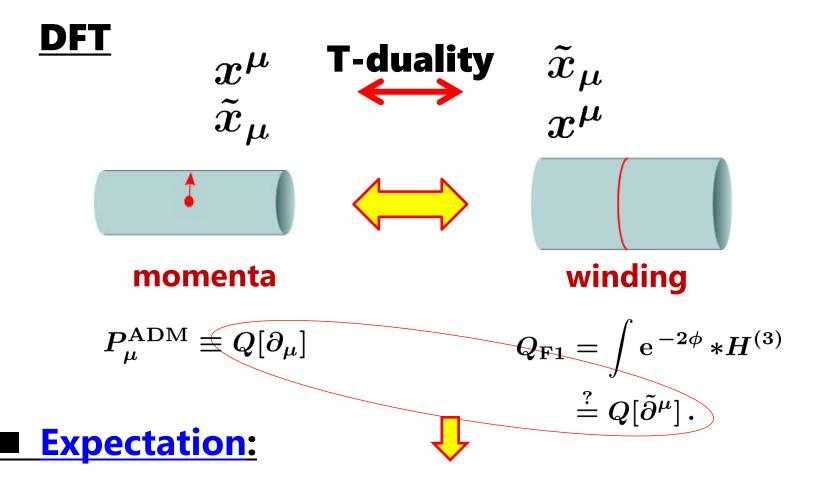
■ Objective:

Find the expression for ADM momenta, like

$$Q[oldsymbol{\xi}] = \int (\mathrm{d}^{D-2}x)_{\mu
u}\,\sqrt{-G}\left(K^{\mu
u}[oldsymbol{\xi}] + 2\,oldsymbol{\xi}^{[\mu}B^{
u]}
ight),$$

in the Double Field Theory.

ADM momenta in DFT (2/2)



ADM momenta & F1 charges will be unified by treating x^{μ} and \tilde{x}_{μ} on an equal footing.

Double Field Theory

C. Hull and B. Zwiebach, JHEP 0909, 099 (2009),
O. Hohm, C. Hull and B. Zwiebach, JHEP 1008 008 (2010),...,
I. Jeon, K. Lee, J-H. Park, JHEP 1104, 014 (2011),

Double Field Theory (1/3)

Manifestly O(D,D)-covariant formulation of Supergravity

2D-dimensional "Doubled Space" $x^A=(ilde{x}_\mu,\,x^\mu)$

$$ightarrow \partial_A = \left(ilde{\partial}^{\mu} \equiv rac{\partial}{\partial ilde{x}_{\mu}}, \, \partial_{\mu} \equiv rac{\partial}{\partial x^{\mu}}
ight)$$

Fund. fields: Generalized metric: $\mathcal{H}_{AB} \equiv \begin{pmatrix} G^{-1} & -G^{-1} B \\ B G^{-1} & G - B G^{-1} B \end{pmatrix}$ T-duality inv. dilaton: $\mathrm{e}^{-2d} \equiv \sqrt{-G} \; \mathrm{e}^{-2\phi}$

DFT action:

 $S_{
m DFT} = \int {
m d}^{2D} x \, {
m e}^{-2d} \, {\cal R} \, .$ density $igcup [ext{Hohm, Hull, Zwiebach, 2010}]$

$${\cal R} \equiv 4 {\cal H}^{AB} \, \partial_A \partial_B d - \partial_A \partial_B {\cal H}^{AB} - 4 {\cal H}^{AB} \, \partial_A d \, \partial_B d + 4 \partial_A {\cal H}^{AB} \, \partial_B d \ + rac{1}{8} \, {\cal H}^{AB} \, \partial_A {\cal H}^{CD} \, \partial_B {\cal H}_{CD} - rac{1}{2} \, {\cal H}^{AB} \, \partial_A {\cal H}^{CD} \, \partial_C {\cal H}_{BD} \, .$$

Double Field Theory (2/3)

Gauge symmetry : generalized diffeo. $x^A o x^A + V^A$.

Gauge parameter: $V^A(x, ilde{x})=(ilde{v}_\mu(x, ilde{x}),\,v^\mu(x, ilde{x}))$.

$$\delta_V \mathcal{H}_{AB} = \hat{\mathcal{L}}_V \mathcal{H}_{AB}, \quad \delta_V e^{-2d} = \hat{\mathcal{L}}_V e^{-2d} = \partial_A (e^{-2d} V^A).$$

Gen. Lie derivative: $\hat{\pounds}_V W^A \equiv V^B \partial_B W^A - (\partial_B V^A - \partial^A V_B) W^B$.

Consistency of the theory

$$\mathcal{J}^{AB}\,\partial_A*\,\partial_B*=0\,.$$
 (strong constraint)

$$\mathcal{J}^{AB} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 (Indices are raised or lowered)

$$\longrightarrow \ rac{1}{2}\,\mathcal{J}^{AB}\,\partial_A *\,\partial_B * = \partial_\mu *\, ilde{\partial}^\mu * = 0\,.$$

$$ightarrow \partial_{\mu} = 0 \quad ext{or} \quad ilde{\partial}^{\mu} = 0 \, .$$

In our work, we choose the canonical section.

Double Field Theory (3/3)

$$lacksquare$$
 $ilde{\partial}^{\mu}=0$

DFT — Conventional Supergravity (NS-NS sector)

$$S_{
m DFT} o rac{1}{2\kappa_{10}^2}\,\int\!\!\sqrt{-G}\,{
m d}^dx\,{
m e}^{\,-2\phi}\left(R+4\,|\partial\phi|^2-rac{1}{12}\,|H|^2
ight).$$

Gauge symmetry of DFT

$$\delta_V \mathcal{H}_{AB} = \hat{\pounds}_V \mathcal{H}_{AB} \Longrightarrow$$
 $\mathcal{H}_{AB} \equiv \begin{pmatrix} G^{-1} & -G^{-1}B \\ BC^{-1} & C & BC^{-1}B \end{pmatrix}$

$$egin{aligned} \delta_V \mathcal{H}_{AB} &= \hat{\pounds}_V \mathcal{H}_{AB} & \Longrightarrow \ \mathcal{H}_{AB} &\equiv \begin{pmatrix} G^{-1} & -G^{-1}B \ BG^{-1} & G-BG^{-1}B \end{pmatrix} & \begin{cases} \delta_V G_{\mu
u} &= \pounds_v G_{\mu
u} \ \delta_V B_{\mu
u} &= \pounds_v B_{\mu
u} + 2\,\partial_{[\mu} ilde{v}_{
u}] \end{aligned}$$

Diffeo. + B-field gauge transf.

Stringy Differential Geometry

$$\delta_V W^A = \hat{\pounds}_V W^A$$

[I. Jeon, K. Lee, J-H. Park, 2011; Hohm, Zwiebach, 2012]

$$\delta_V \partial_B W^A = \hat{\pounds}_V \partial_B W^A + 2\partial_B \partial^{[A} V^{C]} W_C$$
.

Covariant derivative :
$$abla_B W^A \equiv \partial_B W^A + \Gamma_B{}^A{}_C W^C$$
 . $\delta_V
abla_B W^A = \hat{\pounds}_V
abla_B W^A$.

$$R_{ABCD} \equiv \partial_A \Gamma_{BCD} - \partial_B \Gamma_{ACD} + \Gamma_{AC}{}^E \Gamma_{BCD} - \Gamma_{BC}{}^E \Gamma_{ACD}$$
.

$$S_{ABCD} \equiv rac{1}{2} \left(R_{ABCD} + R_{CDAB} - \Gamma^E{}_{AB} \, \Gamma_{ECD}
ight).$$

$$\mathcal{S}_{AB} \equiv P_A{}^C\,ar{P}_B{}^D\,S_{CED}{}^E\,.$$
 (tensor!) $\Longrightarrow~\mathcal{S} \equiv \mathcal{S}_A{}^A\,.$

$$\mathrm{e}^{\,-2d}\,\,\mathcal{S} = \mathcal{L}_{\mathrm{DFT(Hohm-Hull-Zwiebach)}} + \partial_A(*)^A$$

$$m e^{-2d}~{\cal S}={\cal L}_{
m DFT(Hohm-Hull-Zwiebach)}+\partial_{A}(*)^{A}$$
 Generalization of $=\sqrt{-G}~
m e^{-2\phi}\left(R+4\,|\partial\phi|^2-rac{1}{12}\,|H|^2
ight)$ Einstein-Hilbert action

$$+\,\partial_\muigl[4\,\mathrm{e}^{\,-2\phi}\,\partial_
u(\sqrt{-G}\,G^{\mu
u}\partial_
u\phi)igr]\,.$$

O(D,D) Covariant Noether Currents and Global Charges in Double Field Theory

arXiv:1507.07545, to appear in JHEP,

J-H. Park (Sogang U.), S-J. Rey, W. Rim, YS (SNU, IBS)

Noether current (standard procedure)

$$\begin{array}{ll} {\color{blue} {\sf DFT\ action:}} & {\color{blue} {\cal L}_{\rm NS-NS}} = {\rm e}^{-2d}\,{\color{blue} {\cal S}}\,. \\ \\ {\color{blue} {\delta {\cal L}_{\rm NS-NS}}} = 2\,{\rm e}^{-2d} \big(-{\color{blue} {\cal S}}\,{\color{blue} {\delta d}} + {\color{blue} {\cal S}}_{AB}\,{\color{blue} {\delta {\cal H}}}^{AB}} \big) + \partial_A \, \big({\rm e}^{-2d}\,\,{\color{blue} {\Theta }}^A \big) \,\,. \\ \\ {\color{blue} {\cal S}} = 0 & {\color{blue} {\cal S}}_{AB} = 0 \quad \text{(traceless part)} \end{array}$$

Pre-symplectic potential

$$\Theta^A = \mathcal{H}^{AB} \partial_B \delta d -
abla_B \delta \mathcal{H}^{AB} \, .$$

In particular, under a global sym.
$$x^A o x^A + X^A \quad (\delta = \hat{\pounds}_X)$$
 $\stackrel{\mathsf{EOM}}{\delta_X \mathcal{L}_{\mathrm{NS-NS}}} pprox \partial_A (e^{-2d} \, \Theta^A|_{\delta o \hat{\pounds}_X})$ $= \partial_A (\mathrm{e}^{-2d} \, \mathcal{S} \, X^A)$.

$$H^A[X] \equiv \Theta^A|_{\delta o \hat{\mathcal{L}}_X} - \mathcal{S} \, X^A \, . \qquad \Longrightarrow \quad \partial_A ig(\mathrm{e}^{-2d} \, H^A[X] ig) pprox 0 \, .$$
 (Noether current)

Boundary term

To make the Dirichlet problem well-defined, we add a boundary term to the DFT action:

(Identically conserved) Noether current

$$egin{aligned} \widehat{J}^A[X] &\equiv -2\,G^{AB}\,X_B + \Theta^A|_{\delta o \hat{\pounds}_X} - (\mathcal{S} -
abla_B B^B)\,X^A \ &= \partial_Big(\mathrm{e}^{-2d}\,ig[K^{AB}[X] + 2X^{[A}\,B^{B]}ig]ig)\,. \end{aligned}$$

O(D,D)-covariant generalization of the Komar potential

$$K^{AB}[X] \equiv 4 \, (\bar{P}^{[A}{}_{C} \, P^{B]}{}_{D} - P^{[A}{}_{C} \, \bar{P}^{B]}{}_{D}) \, \nabla^{C} X^{D} \, .$$

Noether Charge

$$\widehat{J}^A[X] = \partial_B ig(\mathrm{e}^{\,-2d} \left[K^{AB}[X] + 2 X^{[A} \, B^{B]}
ight] ig) \,.$$

Noether charge:

$$egin{aligned} Q[X] &= \int_{\Sigma_t} (\mathrm{d}^{D-1}x)_{\mu} \, \widehat{J}^{\mu}[X] \ &= \int_{\partial \Sigma_t} (\mathrm{d}^{D-2}x)_{\mu
u} \sqrt{-G} \, e^{-2\phi} \left(K^{\mu
u}[X] + 2 X^{[\mu} B^{
u]}
ight). \end{aligned}$$

$$X^A = egin{pmatrix} oldsymbol{\zeta_{\mu}} + B_{\mu
u} \, oldsymbol{\xi^{
u}} \ egin{pmatrix} oldsymbol{K^{\mu
u}}[X] = -2 \, D^{[\mu} oldsymbol{\xi^{
u}}] - oldsymbol{H^{\mu
u
ho}} \, oldsymbol{\zeta_{
ho}} \, . \end{pmatrix}$$

$$K^{\mu
u}[X] = -2\,D^{[\mu}\xi^{
u]} - H^{\mu
u
ho}\,\zeta_{
ho}\,.$$

[see also C. Blair, arXiv:1507.07541,

"Conserved currents of double field theory"]

July 28th

$$Q[ilde{m{\partial}^{m{z}}}] = \int_{S^{D-3}_{\infty}} e^{-2\phi} \, *_D H^{(3)} \, .$$

Namely, the dual components of the ADM momenta are F1 charges!

Extension

■ DFT + Cosmological const. + YM

$$\mathcal{L}_{ ext{DFT}} = \mathrm{e}^{-2d} \left[\mathcal{S} - 2\Lambda + g_{ ext{YM}}^{-2} \operatorname{Tr} \left(P^{AC} \, ar{P}^{BD} \, \mathcal{F}_{AB} \, \mathcal{F}_{CD}
ight)
ight] \ - \partial_A (\mathrm{e}^{-2d} \, B^A) \, .$$
[I. Jeon, K. Lee, J-H. Park, 2011]

gauge field: $\,V_A\,$

■ (Identically) conserved current

$$e^{-2d} \hat{J}^A = \partial_B \left[e^{-2d} \left(K^{AB}[X] + 2X^{[A}B^{B]} \right) + 12 g_{YM}^{-2} \operatorname{Tr} \left\{ e^{-2d} (P \mathcal{F} \bar{P})^{[AB} V^{C]} X_C \right\} \right].$$

Applications

- 1. Pure Einstein gravity $\left(B_{\mu\nu}=0,\,\phi=0\right)$ (Our formula reproduces the well-known ADM energy.)
- 2. Null wave background

$$egin{align} P_A^{(\mathrm{P})} &= (ilde{P}^t, \, ilde{P}^z, \, ilde{P}^m \, ; \, ilde{P}_t, \, ilde{P}_z, \, P_m) \ &= n_D \, (0, \dots, 0 \, ; \, +1, -1, 0, \dots, 0) \, . \end{array}$$

3. F1 background

$$egin{align} P_A^{({
m F1})} &= & (ilde{P}^t, \, ilde{P}^z, \, ilde{P}^m \, ; \, ilde{P}_t, \, P_z, \, P_m) \ &= ilde{n}_D \left(0, -1, 0, \ldots, 0 \, ; \, +1, 0, \ldots, 0
ight). \end{array}$$

- 4. Non-Riemannian background (previous talk)
- 5. Other examples (R-N black hole, linear-dilaton background,...)

Non-Riemannian background

$$B_{tz} = H^{-1}(r) \,, \quad \phi = 0 \quad \left(H(r) \equiv 1 + \frac{\gamma_D}{r^{D-4}} \right)$$

$${\cal H}_{AB} \equiv egin{pmatrix} G^{-1} & -G^{-1} \, B \ B \, G^{-1} & G - B \, G^{-1} \, B \end{pmatrix}$$

T-dualities along the $(t,\,z)$ -directions

Non-Riemannian BG.

[K. Lee, J-H Park, '13]

$${\cal H}_{AB} \equiv egin{pmatrix} G^{-1} & -G^{-1}\,B \ B\,G^{-1} & G-B\,G^{-1}\,B \end{pmatrix} = egin{pmatrix} {f 0} & * \ * & * \end{pmatrix}$$

In the conventional (super)gravity, we cannot calculate ADM momenta

$$egin{align} P_A^{ ext{(N-R)}} &= (ilde{P}^t,\, ilde{P}^z,\, ilde{P}^m\,;\,P_t,\,P_z,\,P_m) \ &= & (0,0,0,\ldots,0\,;\,0,0,0,\ldots,0)\,. \end{array}$$

Summary

- DFT is a manifestly O(D,D)-covariant formulation of supergravity.
- From the strong constraint, the background fields are independent of \tilde{x}_{μ} . (i.e., there are isometries in the dual directions)
- We calculated O(D,D)-covariant Noether currents associated with the translational symmetries in asymptotically flat doubled spacetimes.
- We showed that the Noether charges associated with translations along the dual directions coincide with the string winding charges.

$$Q[\tilde{\partial}^z] = \int_{S^{D-3}_\infty} e^{-2\phi} *_D H^{(3)}.$$

Future directions

Extension to the <u>Exceptional Field Theory</u>
 (U-duality covariant generalization),

In EFT, there are many additional dual coordinates.

We can unify All brane charges

as the *generalized* ADM momenta

Black hole thermodynamics
 Hawking temperature,
 Bekenstein-Hawking entropy in DFT/EFT?