Exact Computations in Confining Phase using SUSY Localization

Seiji Terashima (YITP) 10 November 2015 at YITP

based on JHEP 1503 (2015) 097 (arXiv:1410.3630) and arXiv:1509.02916

Summary

Theory : 4d N=1 supersymmetric gauge theory

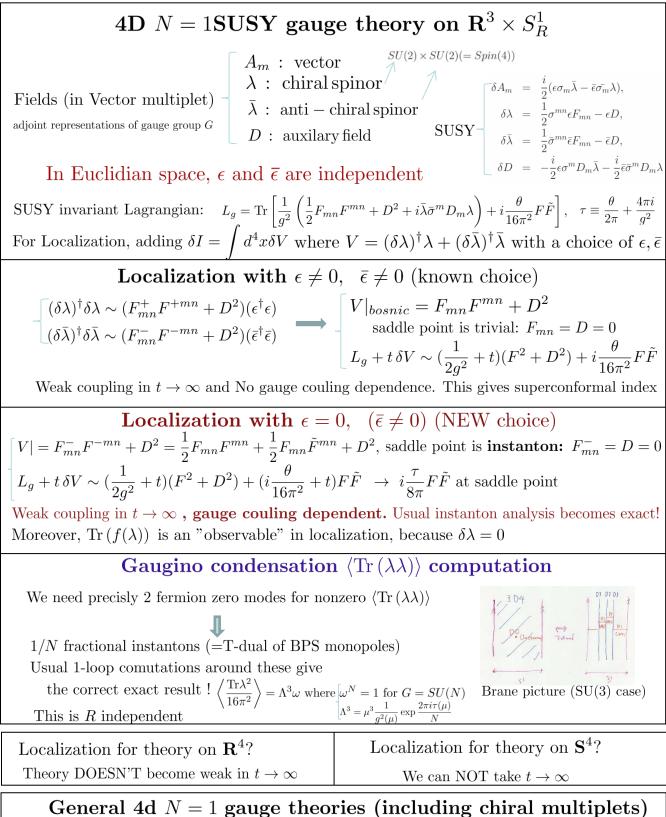
Method: localization with new choice of SUSY generator

We exactly compute

gaugino condensation $\left\langle {{\rm{Tr}}\left({\lambda \lambda } \right)} \right\rangle$ in confining phase

Apply to : nonperturbative proof of Dijkgraaf-Vafa conjecture

Motivation			Localization
Analytic computations in QFT are important, and difficult		For SUSY theory, take $\int \delta = a$ SUSY generator $I = \int (\delta \lambda)^{\dagger} \lambda$	
But, for SUSY field theory , we can ! two major techniques:			$\boxed{I} = \int (\delta \lambda)^{\dagger} \lambda \\ (\lambda \text{ is a fermion})$
1. Holomorphy Simple, But, Indirect			Then, we found $\int \delta I _{bosonic} = \int (\delta\lambda)^{\dagger} \delta\lambda \ge 0$ $\delta^2 I(\phi) = 0$
2. Localization Direct and Systematic, But, had not been applied to theory in confining phase			Let us consider a correlator:
Apply localization technique to "dynamical object" (gaugino condensation) in confining phase !			$Z(t) = \int D\phi e^{-S(\phi) - t \delta I(\phi)} \mathcal{O}_1(\phi) \cdots \mathcal{O}_n(\phi)$ where we assume $\begin{cases} \delta S(\phi) = 0\\ \delta \mathcal{O}_n(\phi) = 0 \end{cases}$ This is independent with $t!$
What is done in this work			$ \begin{aligned} \frac{dZ(t)}{dt} &= \int D\phi \delta \left(I e^{-S(\phi) - t \delta I(\phi)} \mathcal{O}_1(\phi) \cdots \mathcal{O}_n(\phi) \right) \\ &= 0 \\ \text{Taking } t \to \infty, Z(0) &= Z(t \to \infty) \end{aligned} $
	Holomorphy	Localization	In this limit, path-integral localized on $\delta I(\phi_0) = 0$
N=2 SUSY	Seiberg-Witten curve	Nekrasov partition function	$Z(0) = \int_{\text{saddle pt}} D\phi_0$
N=1 SUSY	Seiberg, ADS	This work!	$\left(e^{-S(\phi_0)} \times (1\text{-loop determinant})\right)$ Exactly computable!



General 4d N = 1 gauge theories (including chiral multiplets) Kinetic terms for chiral multiplets can be arbitrary large. Now gauge coupling can be weak also. Thus, we can integrate out them perturbatively! \longrightarrow semi-classical monopole computations Therefore, we can compute the correlators of observables(chiral ring) always in weak coupling \longrightarrow a Nonperturbative proof of Dijkgraff-Vafa conjecture (Marvelous Proof Which This Margin Is Too Narrow To Contain)