

Monte Carlo simulations of a supersymmetric matrix model of dynamical compactification in nonperturbative string theory

Poster session at KEK Workshop 2013, March 19<sup>th</sup> 2013, 14:45-18:20

Konstantinos N. Anagnostopoulos, *Takehiro Azuma*, Jun Nishimura, arXiv:1211.0950, 1303.XXXX

## Content of the poster session



IKKT model (IIB matrix model)

⇒Promising candidate for nonperturbative formulation of superstring theory

$$S = \underbrace{-\frac{N}{4} \operatorname{tr}[A_{\mu}, A_{\nu}]^{2}}_{=S_{B}} + \underbrace{\frac{N}{2} \operatorname{tr}\bar{\psi}_{\alpha}(\Gamma_{\mu})_{\alpha\beta}[A_{\mu}, \psi_{\beta}]}_{=S_{F}}.$$

How does our 4dim spacetime emerge from superstring theory?

We studied Spontaneous Symmetry Breakdown (SSB) of the SO(6) symmetry in the Euclidean 6d version of the IKKT model.

 $\Rightarrow$ Dynamical compactification of spacetime.





Complex phase of the fermion determinant ⇒important for SO(6) rotational symmetry breakdown.

Monte Carlo simulation via factorization method ⇒To what extent do our numerical studies agree with the Gaussian Expansion Method (GEM) results?

- Spontaneous breakdown of SO(6) rotational symmetry to SO(3).
- •Universal "compactification" scale.
- •Constant volume property.



