Monte Carlo studies of the spontaneous rotational symmetry breaking in a matrix model with the complex action

Konstantinos N. Anagnostopoulos, Takehiro Azuma and Jun Nishimura

1. Introduction

Matrix models as a constructive definition of superstring theory iKKT model (IIB matrix model)

⇒ Promising candidate for constructive definition of superstring theory.
N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, hep-th/9612115.

$$S=N\left(-rac{1}{4} ext{tr}\left[A_{\mu},A_{
u}
ight]^{2}+rac{1}{2} ext{tr}\,ar{\psi}_{lpha}(\Gamma_{\mu})_{lphaeta}[A_{\mu},\psi_{eta}]
ight).$$

- A_{μ} (10d vector) and ψ_{α} (10d MW spinor) $\Rightarrow N \times N$ matrices .
- Evidences for spontaneous breakdown of SO(10) \rightarrow SO(4). J. Nishimura and F. Sugino, hep-th/011102,
- Complex fermion determinant:
 - * Crucial for rotational symmetry breaking.
 - * Difficulty of Monte Carlo simulation.

2. Simplified IKKT matrix model

Simplified model with spontaneous rotational symmetry breakdown, J. Nishimura, hep-th/0108070.

 $S = \underbrace{rac{N}{2} {
m tr} \, A_{\mu}^2}_{\alpha} \underbrace{- ar{\psi}^f_{lpha} (\Gamma_{\mu})_{lphaeta} A_{\mu} \psi^f_{eta}}_{-S,\epsilon}$

- A_{μ} : $N \times N$ hermitian matrices $(\mu = 1, \dots, 4)$ $\overline{\psi}^{f}_{\alpha}, \psi^{f}_{\alpha}$: *N*-dim vector $(\alpha = 1, 2, f = 1, \dots, N_{f})$, \Rightarrow CPU cost $O(N^{3})$ (instead of $O(N^{6})$ in IKKT) $N_{f} =$ (number of flavors).
- SO(4) rotational symmetry. No supersymmetry.
- Partition function:

$$egin{aligned} Z &= \int dA e^{-S_B} (\det \mathcal{D})^{N_f} = \int dA e^{-S_0} e^{i\Gamma}, ext{ where } \ \mathcal{D} &= \Gamma_\mu A_\mu = (2N imes 2N ext{ matrices}), \end{aligned}$$

Phase-quenched one: $Z_0 = \int dA e^{-S_0} = \int dA e^{-S_B} |\det \mathcal{D}|^{N_f}$.

Analytical studies of the model

Gaussian expansion analysis up to 9th order: T. Okubo, J. Nishimura and F. Sugino, hep-th/0412194. Observable for probing dimensionality : $T_{\mu\nu} = \frac{1}{N} \operatorname{tr} (A_{\mu}A_{\nu})$. $\lambda_i \ (i = 1, 2, 3, 4)$: eigenvalues of $T_{\mu\nu} \ (\lambda_1 \ge \lambda_2 \ge \lambda_3 \ge \lambda_4)$ Spontaneous breakdown of SO(4) to SO(2) at finite $r \left(=\frac{N_f}{N}\right)$.

3. Monte Carlo simulation

Factorization method

Numerical approach to the complex action problem. K. N. Anagnostopoulos and J. Nishimura, $hep{-}th/0108041$,

Distribution function

$$egin{aligned} &
ho_i(x) \stackrel{ ext{def}}{=} \langle \delta(x- ilde{\lambda}_i)
angle &= rac{1}{C}
ho_i^{(0)}(x) w_i(x), ext{ where } \ & ilde{\lambda}_i &= \lambda_i / \langle \lambda_i
angle_0, ext{ } C &= \langle \cos \Gamma
angle_0, \ &
ho_i^{(0)}(x) &= \langle \delta(x- ilde{\lambda}_i)
angle_0, ext{ } w_i(x) &= \langle \cos \Gamma
angle_{i,x}, \ &\langle *
angle_{i,x} &= [ext{V.E.V. for the partition function } Z_{i,x}] \ &Z_{i,x} &= \int dA e^{-S_0} \delta(x- ilde{\lambda}_i)]. \end{aligned}$$

The position of the peak x_p for the distribution function $\rho_{i,V}(x)$:

$$egin{aligned} 0 &= rac{\partial}{\partial x}\log
ho_{i,V}(x) = f_i^{(0)}(x) - \langle\lambda_i
angle_0 V'(\langle\lambda_i
angle_0 x), ext{ where} \ f_i^{(0)}(x) &\stackrel{ ext{def}}{=} rac{\partial}{\partial x}\log
ho_i^{(0)}(x). \end{aligned}$$

 $\underbrace{ \left(\begin{array}{c} \text{Monte Carlo evaluation of } \langle \tilde{\lambda}_i \rangle \right) } \\ w_i(x) > 0 \Rightarrow \langle \tilde{\lambda}_i \rangle \text{ is the minimum of } \mathcal{F}_i(x) \text{:} \end{array} }$

$${\cal F}_i(x) = ({
m free \ energy \ density}) = -rac{1}{N^2}\log
ho_i(x).$$

We solve $\mathcal{F}'_i(x) = 0$, namely $\frac{1}{N^2} f_i^{(0)}(x) = -\frac{d}{dx} \left\{ \frac{1}{N^2} \log w_i(x) \right\}$. Both $\frac{1}{N^2} \log w_i(x)$ and $\frac{1}{N^2} f_i^{(0)}(x)$ scale at large N as

$$rac{1}{N^2}\log w_i(x)
ightarrow \Phi_i(x), \qquad rac{1}{N^2}f_i^{(0)}(x)
ightarrow F_i(x).$$

Behavior of $\Phi_i(x)$

Expected power behaviors: $\Phi_{i}(x) \propto \begin{cases}
c_{i,0}x^{5-i} + c_{i,1}x^{\frac{11}{2}-i} + \cdots & (x \ll 1, i = 2, 3, 4) \\
\frac{d_{i,0}}{x^{4-i}} + \frac{d_{i,1}}{x^{\frac{9}{2}-i}} + \cdots & (x \gg 1, i = 1, 2, 3)
\end{cases}$

Simulation for r = 1

Contribution of the leading order

Contribution of the next-leading order

Evaluation of $\langle \tilde{\lambda}_i \rangle$

$$\begin{split} &\langle \tilde{\lambda}_{i=2} \rangle = 1.4, \ \langle \tilde{\lambda}_{i=3} \rangle = 0.7 \\ \Rightarrow \text{Rotational symmetry breaking SO(4)} \to \text{SO(2)}. \\ &\text{Result of 9th-order Gaussian expansion:} \\ &\tilde{\lambda}_{i=1} \simeq 1.4, \ \tilde{\lambda}_{i=2} \simeq 1.4, \ \tilde{\lambda}_{i=3} \simeq 0.7, \ \tilde{\lambda}_{i=4} \simeq 0.5. \end{split}$$

(0) [(1/N ⁺) (v)] (0)	6 4 2 0	1123						1 0.5 0.5 0.5 1.5 (%) ¹ (JW1) (JW1) 2.5				=1 =2 =3 =4	3	
	-2	i=4	•	i -3	-2	-1	•••	-3	5	10	15	20	2	
log x										×				

Small $x \ (x \ll 1) \rightarrow (5-i)$ directions are shrunk.

•
$$i = 2, 3, 4$$
: $\rho_i^{(0)}(x) \simeq (\sqrt{x})^{N^2(5-i)}$
 $\Rightarrow \frac{1}{N^2} f_i^{(0)}(x) \simeq \left(\frac{5-i}{2\pi}\right)$

• i = 1: Eigenvalues of A_{μ} are collapsed to zero. \Rightarrow Add the effect of fermionic determinant (polynomial of A_{μ} with degree $2N^2r$). $\Rightarrow \rho_{i=1}^{(0)}(x) = (\sqrt{x})^{2N^2(1+r)} \Rightarrow \frac{1}{N^2}f_i^{(0)}(x) \simeq \left(\frac{2+r}{x}\right)$

$$\log\left(\frac{1}{N^2}f_i^{(0)}(x)\right) = \begin{cases} -\log x + \log(2+r), & i = 1, \\ -\log x + \log\left(\frac{5-i}{2}\right), & i = 2, 3, 4. \end{cases}$$

Large $\boldsymbol{x} \ (\boldsymbol{x} \gg 1)$: $\frac{1}{N^2} f_i^{(0)}(\boldsymbol{x}) \xrightarrow{\boldsymbol{x} \to +\infty} (\text{costant})$ 4. Simulation of IKKT model

4. Simulation of IKK1 mo

6d version of IKKT model K.N. Anagnostopoulos, T. Aoyama, T.A., M. Hanada and J. Nishimura Fermion is not vector but adjoint \Rightarrow More CPU cost $O(N^6)$ Supersymmetry \Rightarrow Solution of $\mathcal{F}'_i(x) = 0$ at xll1 and $x \gg 1$. Asymptotic behaviors of $\frac{1}{N^2} \log w_i(x)$ and $\frac{1}{N^2} f_i^{(0)}(x)$ are important.