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1. Introduction�� ��Matrix models as a constructive definition of superstring theory

IKKT model (IIB matrix model)
⇒ Promising candidate for constructive definition of superstring theory.
N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, hep-th/9612115.

• Evidences for spontaneous breakdown of SO(10) → SO(4).
J. Nishimura and F. Sugino, hep-th/0111102,

• Complex fermion determinant:

* Crucial for rotational symmetry breaking.
J. Nishimura and G. Vernizzi, hep-th/0003223.

* Difficulty of Monte Carlo simulation.

2. 6d IKKT matrix model

Toy model for studying rotational symmetry breaking.

S = −
N

4
tr [Aµ, Aν ]

2︸ ︷︷ ︸
=SB

+
N

2
tr ψ̄α(Γµ)αβ[Aµ, ψβ]︸ ︷︷ ︸

=SF

.

• Aµ (6d vector) and ψ (6d Weyl spinor) are N ×N matrices .
• SO(6) rotational symmetry and SU(N) gauge symmetry.
• Presence of N = 2 supersymmetry.

• Z =

∫
dAe

−SB (det M) =

∫
dAe

−S0e
iΓ

. CPU cost is O(N6).

4d → det M is real positive
6d and 10d → det M is complex.
Complex phase is important in SO(6) breakdown.

• Previous works on this model:

* Simulation of phase-quenched 6d and 10d IKKT model
⇒ no symmetry breakdown of SO(6) (and SO(10)).
J. Ambjorn et. al., hep-th/0005147

* Gaussian Expansion Method
⇒ symmetry breakdown of SO(6) to SO(3).
T. Aoyama, J. Nishimura and T. Okubo

Observable for probing dimensionality : Tµν =
1

N
tr (AµAν).

λn (n = 1, · · · , 6) : eigenvalues of Tµν (λ1 = λ2 = · · · = λ6)
At large N , ⟨λ1,2,3⟩ ≫ ⟨λ4,5,6⟩
⟨λ4⟩ = 0.18 → finite extent of extra dimension.

1,2,3 3dim extra
dimensions

4,5,6

3dim spacetime

3. Monte Carlo simulation�� ��Factorization method

Numerical approach to the complex action problem.
K. N. Anagnostopoulos and J. Nishimura, hep-th/0108041 ,
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Distribution function

ρn(x)
def
= ⟨δ(x− λ̃n)⟩ =

1

C
ρ
(0)
n (x)wn(x), where

λ̃n = λn/⟨λn⟩0, C = ⟨cos Γ⟩0,

ρ
(0)
n (x) = ⟨δ(x− λ̃n)⟩0.

⟨∗⟩0 = ( V.E.V. for the phase-quenched model Z0 =

∫
dAe

−S0).

no symmetry breakdown of SO(6) for Z0 → ⟨λ1⟩0 = · · · = ⟨λ6⟩0.

λ̃n = λn/⟨λn⟩0 ̸= 1 → SO(6)’s breakdown.

wn(x) = ⟨cos Γ⟩n,x,

⟨∗⟩n,x = (V.E.V. for the partition function Zn,x)

Zn,x =

∫
dAe

−S0δ(x− λ̃n).

Resolution of the overlap problem:
The system is forced to visit the configurations where ρn(x) is important.

The position of the peak xp for the distribution function ρn,V (x):

0 =
∂

∂x
log ρn,V (x) = f

(0)
n (x) − ⟨λn⟩0V ′

(⟨λn⟩0x), where

f
(0)
n (x)

def
=

∂

∂x
log ρ

(0)
n (x).�� ��Monte Carlo evaluation of ⟨λ̃n⟩

wn(x) > 0 ⇒ ⟨λ̃n⟩ is the minimum of Fn(x):

Fn(x) = (free energy density) = −
1

N2
log ρn(x).

We solve F ′
n(x) = 0, namely

1

N2
f

(0)
n (x) = −

d

dx

{
1

N2
logwn(x)

}
.

Both
1

N2
logwn(x) and

1

N2
f

(0)
n (x) scale at large N as

1

N2
logwn(x) → Φn(x),

1

N2
f

(0)
n (x) → Fn(x).
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�Behavior of

1

N2
logwn(x)

Expected power behaviors:
1

N2
logwn(x) ∝

{
cn,0x

7−n + · · · (x ≪ 1, n = 2, 3, · · · , 6)
const. (x ≫ 1, n = 1, 2, · · · , 5)�

�
�
�Behavior of

1

N2
f

(0)
n (x)

Small x ⇒ (7 − n) directions are shrunk.

• n = 2, · · · , 6: ρ
(0)
n (x) ≃ (

√
x)

N2(7−n)

• n = 1: Eigenvalues of Aµ are collapsed to zero.
⇒ Add the effect of fermionic determinant (polynomial of Aµ with

degree 4N2). ⇒ ρ
(0)
i=1(x) ≃ (

√
x)

(6+4)N2

1

N2
f

(0)
n (x) =

{
7−n+4δn,1

2x (x ≪ 1)
0 (x ≫ 1)

-0.01

-0.008

-0.006

-0.004

-0.002

 0

 0  2  4  6  8  10

(1
/N

2 ) 
lo

g 
w

n=
4(

x)

x

N=8,n=4

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.2  0.4  0.6  0.8  1

x 
f n

=
4(0

)  (
x)

/N
2

x

N=8
N=24
N=32
N=48

Double-peak structure for n = 2, 3, 4, 5.
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Symmetry breakdown of SO(6) to SO(3) in Gaussian Expansion Method.
xs for n = 4 ⇒ extent of extra dimension.

1

N2
f

(0)
n (x) scales at small x in 6d full IKKT model.

(in contrast to
1

N
f

(0)
n (x)’s scaling in 6d one-loop model).

⇒ hard-core potential at large N (xs is finite).
Consistent with Gaussian Expansion Method.

4. Conclusion

Monte Carlo simulation of 6d IKKT model.
Can we understand the emergence of spacetime?

• Extent of the extra dimension → finite.
⇒ Consistent with Gaussian Expansion Method.

Future works:

• Analysis of large-x regime.

• Comparison of the free energy.
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