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1. Matrix models on the homogeneous space '

Large-N reduced models are the most powerful candidates for the
constructive definition of superstring theory.

Several alterations of the IIB matrix model have been proposed, to
accommodate the curved-space background.

e The matrix model with the Chern-Simons term:
(hep-th/0101102,0204256,0207115)

These matrix models accommodate the curved-space fuzzy-manifold
classical solutions, based on the homogeneous space.

A homogeneous space is realized as G/ H:
e G = (a Lie group)

e H = (a closed subgroup of G)

S? =8U(2)/U(1), S%xS?, s*=50(5)/U(2),
CP? = SU(3)/U(2),---.

Such curved-space fuzzy-manifold solutions are interesting in the fol-
lowing senses:

e More manifest realization of the curved-space background:
Essential for an eligible framework for gravity.

e We may get insight into the dynamical generation of the gauge
group.

2. The model and its classical solutions '

Here, we scrutinize the bosonic matrix model that accommodates the
four-dimensional fuzzy manifold.
In the following, we focus on the fuzzy CP? manifold.

e Defined in the 8-dimensional Euclidean space:
(hry e = 100 ,8)

e A, are promoted to the N X N hermitian matrices.

® [, are the structure constant of the SU(3).
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Its equation of motion
[Avv [A/u A,,]] - io‘f/u/p[Avr AP] =0
accommodates the following two classical solutions:

(a)fuzzy S? sphere
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The Casimir Q = ZS N Ai is given by
u=

(n=1,2,3),
(otherwise).
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(b)fuzzy CP? space

The fuzzy cp? space is realized by the (m,0) representation of the
SU(3) Lie algebraz:

(CP2) _ _m(m,0)
AH = aTH .

This corresponds to the SU(3)/U(2) homogeneous space.

This space is realized by the symmetric tensor product of the funda-
mental representation of the SU(3) Lie algebra t,:
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Here .ym denotes the symmetric tensor product.
The Casimir is given by
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The matrix size of this representation is

(m+1)(m+ 2)
3

N = , (form=1,2,3,---).

Thus, this representation is realized for a limited size of the matrices
N =3,6,10,15,21,---.

We investigate this model via the heat bath algorithm of the Monte
Carlo simulation.

In this sense, our analysis is nonperturbative.

3. The fuzzy CP? classical solution '

We start from the fuzzy CP? initial condition:

(0) _ 4(cp?)
A = A .

To see the behavior of this solution, we discuss the following observables:
e The action S.

. 1 8 A2
e The spacetime extent +-tr ZH=1 Au.
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Here, we introduce the rescaled parameter @ = N 2.

[ﬁrst—order phase transition]

We have a first-order phase transition, at the critical point

2 2 1
&:&ﬁgp )(= ozgjp INzZ ~ 2.3).
12
H ST = N=15 ~——
5 £ 10 N=21 o 4
-10 g 8 N=28 st )
&-1s N classical 4
Z 20 N=15 % 6 one-loop <
¢ 25 N=21 e 5, 7
-30 N z ¥
-35 classical 3 2
ﬁg one-loop v ol—= T ssie am
0 1 2 3 4 0 1 2 3 4

Q
Q



2 2
o o< agsp ): the effect of the Chern-Simons term is negated, and o o< ag ): The behavior is similar to the pure Yang-Mills model.

we see the following behavior typical of the pure Yang-Mills model:
2
e o > ag ). the fuzzy 52 is stable.
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The numerical results are close to the one-loop result at o > ozg ),
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[ one-loop dominance ]
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o We extrapolate the finite-N effect, by plotting these observables
2a 4 against Lz:
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e N =6,10,15,21,28.

We extrapolate the finite-N effect, by plotting these observables
against %:
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5. Fuzzy CP? or !

— which is the true vacuum?

e The finite-N effects are of the order O(+).

We determine which is the true vacuum, according to the one-loop
dominance.

e We have a deviation from the one-loop calculation at large N.

Since the deviation is rather small, we nevertheless regard this

system as retaining the “one-loop dominance”. The one-loop effective action around the fuzzy CP? and S? is

m

+3 Z(C + 1)3 log[Nazc(C +2)]

e=1

In fact, the three-dimensional model with fuzzy S? classical solution m(m + 3)
(scrutinized in hep-th/0401038) also has the same deviation. Wep2 = — B o*N?
The critical point is consistent with the calculation from the one-loop
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effective action a_; ) = 5 2.3094011 - - -. N2 (_ ; +6loga + 6log N) ,

4. The fuzzy S? classical solution I N1
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We next start the simulation from the fuzzy S? initial condition: =1

12

1

> atN?
N — Y1 +6loga+9log N | .

(0) _ 4(s%)
A = AP,

-

We plot the observables against the rescaled parameter & = a/N 2. The difference is calculated (at large N) as
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o o Therefore, A < 0, namely Wgo < W po.
The fuzzy S? is the true vacuum, and the fuzzy CP? is a metastable
state.
[ﬁrst—order phase transition] Nevertheless, the fuzzy CP? state retains a very strong metastability.

‘We have a first-order phase transition, at the critical point
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