Quantum fluctuation of higher-dimensional fuzzy-sphere solution of a matrix model I
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A large N reduced model has been proposed as a constructive definition
(nonperturbative formulation) of the superstring theory:
N.Ishibashi, H.Kawai, Y.Kitazawa and A.Tsuchiya, hep-th/9612115.
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e Dimensional reduction of N’ = 1 10-dimensional SYM theory to 0
dimension.
A, and ¢ are N x N Hermitian matrices.
* A,: 10-dimensional vectors

* 4):  10-dimensional Majorana-Weyl (i.e. 16-component)

spinors

® Matrix regularization of the Schild action of the type IIB super-
string theory.

e SU(N) gauge symmetry and SO(10) Lorentz symmetry (SO(10) x
SU(N)).

e N = 2 SUSY: This theory must contain spin-2 gravitons if it con-
tains massless particles.

The drawback of the IIB matrix model:

=> It has only a classical solution of the flat non-commutative space:
[AY,[AL, AL]] =0 = [Ay, A] =dcuu 1.

In order to surmount this drawback, we consider the generalization of
the ITB matrix model:
Y. Kimura hep-th/0204256, 0301055.
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e This action is defined in the odd (2k + 1)-dimensional Euclidean
spacetime.

e SO(2k + 1) rotational symmetry and SU(N) gauge symmetry.
The classical equation of motion
—[Av, [Ap, AL]] — 9(2k + V)epuq - ovgy Avqg - - Ay, =0

incorporates the higher-dimensional fuzzy-sphere solution!
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@), is given by the symmetric tensor product of the (2k+1)-dimensional
gamma matrices:
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e I'?*®) denotes the 2* x 2 gamma matrices for the (2k + 1)-
dimensional Euclidean space.

e This symmetric tensor product is realized only for a limited size of
the matrices. For the (2k + 1) dimensions, the size N}, is
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o G, gives the sphere’s geometry in that

G.G, = n(n+2k)lkaNkA

o G, generally does not close with respect to the commutator. For
Gy =[G, Gu], we obtain
GuvGuy = —8kn(n + 2k)1n, x Ny, »
[Guv,Gpl = 4(=8up G + 8,,G ),

[Guv,Gpol =4(8,,Gpo +6usGup — 6upGro — 6u0Gpp).

e Self-dual condition:

€pvy-vgy Guy o Gugy = meGp.

The coefficient m, satisfies the following recursive formula:

my = 2i, ma =8(n+2), mz=—48i(n+ 2)(n+ 4),

mrpy1 = —2i(k + 1)(n + 2k)my.

However, the quantum stability of the fuzzy-sphere solution is still
obscure.
=> We investigate the stability via the Monte-Carlo simulation.

[(a) ‘Warm-up: quadratic U(N) one-matrix model

We start with the simplest case — quadratic U(NN) one-matrix model:
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The Feynman diagram of this matrix model:
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Then, the following quantities can be computed exactly:
1 o 1 a 1 1 2oy 2
(FTre) =1, (FTre") =2+ o5, (FTré")) =1+ 13-

‘We analyze this model via the heat-bath algorithm. To this end, we
rewrite the U(N) matrix ¢ as

, zi5+iyij
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The N2 real quantities a;, z;;, y;; comply with the independent normal
Gaussian distribution.
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(b) Quartic one-matrix model

‘We analyze the one-matrix model via the heat-bath algorithm:

NT¢2
Tre? —
2

N
S = gTTms“.

This action is unbounded below. However, we can avoid the divergence

in the large-/N limit.
We introduce the auxiliary fields Q as (a = \/g) in order to render

the action quadratic:
-~ N N N
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We update Q as

where a;, x;;, y;; comply with the normal Gaussian distribution.
In updating the diagonal part ¢;;, we extract the dependence of ¢;;:
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Then, ¢;; is updated as

We likewise extract the ¢;; dependence:
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Then, ¢;; is updated as follows:

The legitimacy of the algorithm is ascertained by checking the following
results (as NV — oco):
E.Brezin, C.Itzykson, G.Parisi and J.Zuber, Comm. Math. Phys. 59, 35 (1978).
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The eigenvalue distribution is given by
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[(c) The bosonic IIB matrix model ]
T. Hotta, J. Nishimura and A. Tsuchiya hep-th/9811220.
‘We investigate the bosonic IIB matrix model via the the heat-bath algo-
rithm:
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This action is equivalent to g, after integrating out Q,, (where G, =
{Au, A }):
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Then, Q. is updated as

We next update A,. We extract the dependence of Aj.

S = —NTr(TxAx) + ZNTT(SAAi) + ---, where

S = (A2), Ta=Y (AuQuu+Quud):
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e The diagonal part A, is updated by extracting the dependence of
(Ap)ist

S =2N(Sx)ii(An)7; —4Nh;(A,)ii, where

T =2 Y (5355 (Ax)is + (S3)i3 (Ax);0)]
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Then, (A»)i; is updated as

o The other components (A,);; are updated likewise by extracting
their dependence:

S =2Ncij|(Ax)i;|> — 2Nhji(Ax)ij, where
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Then, (A,)i; are updated as

The following Schwinger-Dyson equation serves as the consistency check
of the algorithm.
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(d) Extension to the bosonic IIB matrix model
with the Chern-Simons term

The Chern-Simons term is linear with respect to each A,.
‘We have only to replace T as

TS =T + g(2k + Dervy gy Avy -+ A
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The Schwinger-Dyson equation is replaced as
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In order to see the stability of the fuzzy-sphere solution, we focus on the
eigenvalues of the Casimir

C:4Y12+4Y§+"'+X§k+l‘

o We start by setting A, to be the fuzzy-sphere classical solution.

o We watch the behavior of the eigenvalue distribution, as we iterate
the Monte-Carlo updating.
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Our analysis is now under the way. We are faced with the setbacks
in analyzing our case.

The difficulty comes from the unboundedness of the IIB matrix
model with the Chern-Simons terms. This situation would be analogous
to that for the one-matrix model.

In order to understand the behavior of the IIB matrix model with the
Chern-Simons term, we should scrutinize the one-matrix model thor-
oughly.



