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1 Introduction

Large-N reduced models are the most powerful candi-
dates for the constructive definition of superstring theory.

N.Ishibashi, H.Kawai, Y.Kitazawa and A.Tsuchiya, hep-th/9612115.

The IIB matrix model has the following illuminating
features:

e We can describe the multi-body system of D-branes.
The IIB matrix model is
but

e Evidence of the gravitational interaction:

* When we regard
, this model incorporates the N' = 2
supersymmetry. (hep-th/9612115)

*x Graviton-dilaton exchange: (hep-th/9612115)
* Diffeomorphism invariance: (hep-th/9903217)

e Derivation of 4-dimensional spacetime:
(hep-th/9802085,0204240,0211272)



Generalization of the IIB matrix model'

Several alterations of the IIB matrix model have been
proposed, to accommodate the curved-space background.

e The matrix model with the Chern-Simons term:
(hep-th/0101102,0204256,0207115)

These matrix models accommodate the fuzzy sphere
classical solutions:

The fuzzy sphere solutions are interesting in the follow-
ing senses:

e More manifest realization of the curved-space back-
ground:
Essential for an eligible framework for gravity.

e The expansion of the reducible representation

J ,Sn) ® 1gxk leads to the U(k) noncommutative gauge
theory (J l(f") = n X n representation of su(2)).

We may get insight into the dynamical generation of
the gauge group.



2 Fuzzy sphere as classical solution

Throughout this talk, we focus on the following bosonic
action:

e Defined in the three-dimensional Euclidean space
(pyvye-+=1,2,3).
SO(3) rotational and SU(IN) gauge symmetry.

e Each A, is promoted to the NV X N hermitian matrix.

Its classical equation of motion
accommodates the S? fuzzy sphere solution
is an N X N irreducible representation of the SU (2)

Lie algebra.

The radius of the fuzzy sphere is given by the Casimir:



Monte-Carlo simulation of the matrix model'

We analyze this bosonic Chern-Simons matrix model
through the heat bath algorithm of the Monte Carlo sim-
ulation.

In this sense, our approach is nonperturbative, unlike
the foregoing perturbative approach:

e Two-loop diagrammatic calculation: (hep-th/0303120,0307007)

e First order of the Gaussian expansion : (hep-th/0303196)



3 Nonperturbative stability of the fuzzy sphere

We start the Monte Carlo simulation from the initial con-
dition

for the N = 16, o« = 1.0, 2.0 case.

We plot the eigenvalue distribution of the Casimir
Q= A7+ A3 + AL
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Nonperturbative stability of the fuzzy spheres!

6



The stability is ascribed to the small quantum effect at
large a.
For the effective action W = jdA,e "

e Effect of the classical fuzzy sphere: O(a*N?).
e Effect of the path integral measure: O(N?).

The quantum effect is small when o > O(ﬁ)

We plot the miscellaneous quantities against &« = a+/ N.

1. The action (S).

2. The spacetime extent (TrA?).

3. The bosonic Yang-Mills term (- F7,),
where F,, = i[A,, A,].
4. The Chern-Simons term: (M) = (;—]@Treu,,pAuAyAp).

5. Exact result derived from Schwinger-Dyson equation:

0 " B
0 = /dA@(TT(t A“)e S).

1 1
K = NTTFNV —|— 3aM = 3(1 — ﬁ).



{First-order phase transition )

We have a discontinuity at &2’,) ~ 2.1.

e The Yang-Mills phase:

The quantum effect is large.
The behavior resembles the bosonic IIB matrix model.

e The fuzzy sphere phase:
The quantum effect is small.
The model retains the classical fuzzy sphere.

[One-loop exactness in the fuzzy sphere phase J

In the fuzzy sphere phase, we have a one-loop exactness

at the large N.

The one-loop calculation of the quantities:
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Figure 1: (Upper) (S)/N?, (Lower) (5TrA2)/N, against &.
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4 Connection to the Yang-Mills phase

We start from another initial configuration

The critical point is different from the fuzzy sphere ini-
tial condition!

In the Yang-Mill phase,
(5) 1
Similar to the bosonic IIB matrix model (a = 0).
T. Hotta, J. Nishimura and A. Tsuchiya hep-th/9811220.

We see a strong hysteresis at NV = 16.
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Figure 4: The hysteresis cycle of (Upper) (S)/N? and (Lower) <%T’I’Ai>.
13



5 Multi-fuzzy-sphere state

The matrix model accommodates the multi-fuzzy-sphere
solution.

J/.(l,nl)

J(n2)
A, =« K

J (nk)

u

° Jl(]"a): The n,-dimensional irrep. of SU(2).
ny+ng+--+np=N.

e The eigenvalues of ) are peaked at r] = “-(n) — 1).

e The classical energy is S = —a;iv sk_ (n2 —ny,).
Higher than that of the one-fuzzy-sphere state A, =
ad,.

We initiate the simulation from Al(f)) — 0 for
N = 16,a = 2.0 € (fuzzy sphere phase).

The multi-fuzzy sphere is realized as a metastable state.

initial state

metastable vacuum

stable vacuum
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Figure 5: The history of the vacuum expectation value of the action (S) (left), and the eigen-
values of Q (right) against the sweeping time, for N = 16, a = 2.0.
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[kletastability of the multi-fuzzy-sphere state ]

We compare the dependence of the multi-fuzzy-sphere
state on k, o, N.

We initiate the simulation from
A©) = ™ @ L,

namely when n =n; = ... =ng = .

e k dependence: N = 16, o = 10.0 fixed. £ = 2,4, 8.
The sphere is more stable for smaller k (namely, larger
J(n),

w

e o dependence: N = 16, k = 8 fixed. various «.
The sphere is more stable for larger a.

e N dependence: k = 2, a = 40.0 fixed. N = 8,16, 32.
The sphere is stable for larger N (commutative limit).
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6 Conclusion

In this work, we have investigated the stability of the
fuzzy sphere in the matrix model with the Chern-Simons
term.

e The first-order phase transition between the Yang-
Mills phase and the fuzzy sphere phase.

® One-loop exactness at the large N in the fuzzy-sphere
phase.

Future works:
e Extension to the supersymmetric case.

e Extension to the higher-dimensional case.
fuzzy 2k-sphere, S? x S?, .. ..

e Dynamical generation of the gauge group.
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Heat bath algorithm of the matrix model'

((a) Warm-up: quadratic U (IN) one-matrix model |

We start with the simplest case — quadratic U(IN) one-matrix

model:
N 2
S = ETT¢ .

We analyze this model via the heat bath algorithm. To this end, we
rewrite the U (IN) matrix ¢ as
Tij+1Yij

i { i = "N (for 7 < j).

¢ZZ — == ,i'—‘ i
VN | ¢ji = S5,

The N? real quantities a;, x;j, ¥;; comply with the independent nor-
mal Gaussian distribution.

1 XN 2 1 2 2
§=52 ai+ 52 ()" + (vi)")-
1=1 1<)
N 1N 1
Z=[1lda; I daidyi;exp <—5 Yai—- ¥ ((ziy)’+ (%‘)2)) -

i=1 1<i<j<N i=1 2 1<i<j<N

ai, T;j, Y;; are updated by the Gaussian random number.

'Generation of the uniform random number

We use the congruence method.

e We give the random seed z1, such as a; = time().

e We solve the recursion formula

The choice is known to give a good pseudo-

random number.

e The sequence {;;7*;} gives a uniform pseudo-random number
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'Generation of the Gaussian random number |

e We take two uniform random numbers =,y € [0 : 1].

e We introduce the quantity »r = +/—a?log ?. This complies with
the probability distribution

e We next introduce the quantities
X =rcos(2ny), Y = rsin(2wy).

They comply with the probability distribution

[(b) The bosonic IIB matrix model |
T. Hotta, J. Nishimura and A. Tsuchiya hep-th/9811220. !
We investigate the d-dimensional bosonic IIB matrix model via the
the heat bath algorithm:

= _ﬁ : 2 _ _g 2 2 42
S = > Tr[A,, A" = > Tr{A,,A}"+2N } Tr(AA)).
u,rv=1 1<pu<v<d u<v

This action is equivalent to S , after integrating out Q,, (where G, =
{Aua AL}):

~

N

S —_= Z (?TT‘QiV — NTT'(Q'LU/GNV) + ZNTT(AiA?/)>
u<v

N 2

E Z TT‘(Q/_“/ - G/JJ/) + S'

u<v

Then, Q,. is updated as
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We next update A). We extract the dependence of A).

S = —NTr(TrA,) +2NTr(S\A2) +---, where
S)\ — Z (Az)’ T)\ — Z (A;LQ)\;L + Q)\u u)

HFEA HFEA

e The diagonal part A) is updated by extracting the dependence
of (A)\)m

~

S = (S)\)M(A)\)z — 4Nh (A)\)m, where
hi [(Tx)m —2 Z ((82)4i(Ax)ij + (Sx)ij (Ar)ji)]-

Then, (A));; is updated as

e The other components (Aj);; are updated likewise by extracting
their dependence:

5’ = 2NC¢j|(A)\),,;j|2 — 2Nhj,,;(A)\)ij, where
cij = (Sx)ii + (SA)js»

hij = %(Tx)z‘j — > (SN)i(AN)kj — > (SA)ki(Ar)ik-
ki kA

Then, (A,);; are updated as

‘(c ) Extension to the bosonic IIB matrix model with the Chern-
Simons term

The Chern-Simons term is linear with respect to cach A,,.
We have only to replace T) as (for d = 3)

T)\CS = T)\ —|— 396)\,/1,/2AV1A,/2.
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