Nonperturbative studies of the fuzzy spheres in a matrix model with the Chern-Simons term hep-th/0311***

Takehiro Azuma
Department of Physics, Kyoto University

Laboratory Camp 2003 at Kishuji Minabe Nov. 22st 2003 17:00 ∼ 17:30

collaborated with S. Bal, K. Nagao and J. Nishimura

Contents

1	Introduction	2
2	Fuzzy sphere as classical solution	4
3	Nonperturbative stability of the fuzzy sphere	6
4	Connection to the Yang-Mills phase	12
5	Multi-fuzzy-sphere state	14
6	Conclusion	17

1 Introduction

Large-N reduced models are the most powerful candidates for the constructive definition of superstring theory.

The IIB matrix model

N.Ishibashi, H.Kawai, Y.Kitazawa and A.Tsuchiya, hep-th/9612115.

$$S = rac{-1}{g^2} Tr_{N imes N} \left(rac{1}{4} \mathop{ extstyle \sum}_{\mu=0}^9 [A_\mu, A_
u]^2 + rac{1}{2} ar{\psi} \mathop{ extstyle \sum}_{\mu=0}^9 \Gamma^\mu [A_\mu, \psi]
ight).$$

The IIB matrix model has the following illuminating features:

- We can describe the multi-body system of D-branes.

 The IIB matrix model is not the D-instanton action but the second quantization of superstring theory.
- Evidence of the gravitational interaction:
 - * When we regard the eigenvalues as the spacetime coordinates, this model incorporates the $\mathcal{N}=2$ supersymmetry. (hep-th/9612115)
 - ★ Graviton-dilaton exchange: (hep-th/9612115)
 - ★ Diffeomorphism invariance: (hep-th/9903217)
- Derivation of 4-dimensional spacetime:

(hep-th/9802085,0204240,0211272)

Generalization of the IIB matrix model

Several alterations of the IIB matrix model have been proposed, to accommodate the curved-space background.

• The matrix model with the Chern-Simons term: (hep-th/0101102,0204256,0207115)

These matrix models accommodate the fuzzy sphere classical solutions:

The fuzzy sphere solutions are interesting in the following senses:

• More manifest realization of the curved-space background:

Essential for an eligible framework for gravity.

• The expansion of the reducible representation

 $J_{\mu}^{(n)} \otimes 1_{k imes k}$ leads to the U(k) noncommutative gauge theory $(J_{\mu}^{(n)} = n imes n$ representation of su(2)).

We may get insight into the dynamical generation of the gauge group. 2 Fuzzy sphere as classical solution

Throughout this talk, we focus on the following bosonic action:

$$S = Tr_{N imes N} \left(-rac{N}{4} [A_{\mu},A_{
u}]^2 + rac{2ilpha N}{3} \epsilon_{\mu
u
ho} A_{\mu} A_{
u} A_{
ho}
ight).$$

- ullet Defined in the three-dimensional Euclidean space $(\mu, \nu, \dots = 1, 2, 3).$ SO(3) rotational and SU(N) gauge symmetry.
- Each A_{μ} is promoted to the $N \times N$ hermitian matrix.

Its classical equation of motion

$$[A_{\mu},[A_{\mu},A_{
u}]]+ilpha\epsilon_{
u
ho\chi}[A_{
ho},A_{\chi}]=0.$$

accommodates the S^2 fuzzy sphere solution

$$A_{\mu}=lpha J_{\mu}, ext{ where } [J_{\mu},J_{
u}]=i\epsilon_{\mu
u
ho}J_{
ho}.$$

 J_{μ} is an $N \times N$ irreducible representation of the SU(2) Lie algebra.

The radius of the fuzzy sphere is given by the Casimir:

$$Q = A_1^2 + A_2^2 + A_3^2 = R^2 1_{N imes N}, ext{ where } R^2 = lpha^2 rac{N^2 - 1}{4}.$$

Monte-Carlo simulation of the matrix model

We analyze this bosonic Chern-Simons matrix model through the heat bath algorithm of the Monte Carlo simulation.

In this sense, our approach is nonperturbative, unlike the foregoing perturbative approach:

- Two-loop diagrammatic calculation: (hep-th/0303120,0307007)
- First order of the Gaussian expansion: (hep-th/0303196)

3 Nonperturbative stability of the fuzzy sphere

We start the Monte Carlo simulation from the initial condition

$$A_{\mu}^{(0)}=lpha J_{\mu},$$

for the N = 16, $\alpha = 1.0, 2.0$ case.

We plot the eigenvalue distribution of the Casimir $Q = A_1^2 + A_2^2 + A_3^2$.

The eigenvalues are peaked around

$$R^2 = rac{1}{4} lpha^2 (N^2 - 1).$$

Nonperturbative stability of the fuzzy spheres!

The stability is ascribed to the small quantum effect at large α .

For the effective action $W=\int dA_{\mu}e^{-S}$

- Effect of the classical fuzzy sphere: $\mathcal{O}(\alpha^4 N^4)$.
- Effect of the path integral measure: $\mathcal{O}(N^2)$.

The quantum effect is small when $\alpha \gg \mathcal{O}(\frac{1}{\sqrt{N}})$.

We plot the miscellaneous quantities against $\tilde{\alpha} = \alpha \sqrt{N}$.

- 1. The action $\langle S \rangle$.
- 2. The spacetime extent $\langle \frac{1}{N} T r A_{\mu}^2 \rangle$.
- 3. The bosonic Yang-Mills term $\langle \frac{1}{N} F_{\mu\nu}^2 \rangle$, where $F_{\mu\nu} = i [A_\mu, A_\nu]$.
- 4. The Chern-Simons term: $\langle M \rangle = \langle \frac{2i}{3N} Tr \epsilon_{\mu\nu\rho} A_{\mu} A_{\nu} A_{\rho} \rangle$.
- 5. Exact result derived from Schwinger-Dyson equation:

First-order phase transition

We have a discontinuity at $\tilde{\alpha}_{cl}^{(l)} \sim 2.1$.

- The Yang-Mills phase:
 The quantum effect is large.
 The behavior resembles the bosonic IIB matrix model.
- The fuzzy sphere phase:
 The quantum effect is small.
 The model retains the classical fuzzy sphere.

One-loop exactness in the fuzzy sphere phase

In the fuzzy sphere phase, we have a one-loop exactness at the large N.

The one-loop calculation of the quantities:

$$rac{\langle S
angle}{N^2} = rac{1}{24} ilde{lpha}^4 overt_1, \ rac{1}{N} \langle rac{1}{N} Tr A_{\mu}^2
angle = rac{ ilde{lpha}^2}{4} rac{+1}{ ilde{lpha}^2}, \ rac{ ext{classical one-loop}}{ ilde{lpha}^2}, \ rac{\langle rac{1}{N} Tr F_{\mu
u}^2
angle}{ ilde{lpha}^2} = rac{ ilde{lpha}^2}{ ilde{2}} rac{+0}{ ilde{lpha}^3}, \ rac{ ext{classical one-loop}}{ ilde{lpha}^3} = rac{ ilde{lpha}^3}{ ilde{lpha}^3} rac{+1}{ ilde{lpha}}. \ rac{ ext{classical one-loop}}{ ilde{lpha}^3}.$$

Figure 1: (Upper) $\langle S \rangle/N^2$, (Lower) $\langle \frac{1}{N} Tr A_{\mu}^2 \rangle/N$, against $\tilde{\alpha}$.

Figure 2: (Upper) $\langle \frac{1}{N} Tr F_{\mu\nu}^2 \rangle$, (Lower) $\langle M \rangle / \sqrt{N}$, against $\tilde{\alpha}$.

Figure 3: $\frac{\langle K \rangle}{\text{(analytical value)}} = \frac{\langle K \rangle}{3(1-1/N^2)}$

4 Connection to the Yang-Mills phase

We start from another initial configuration

$$A_{\mu}^{(0)}=0$$
 .

The critical point is different from the fuzzy sphere initial condition!

$$lpha_{cr}^{(u)} \sim 0.66$$
.

In the Yang-Mill phase,

$$rac{\langle S
angle}{N^2}, \;\;\; \langle rac{1}{N} Tr A_{\mu}^2
angle \sim {\cal O}(1).$$

Similar to the bosonic IIB matrix model ($\alpha = 0$).

T. Hotta, J. Nishimura and A. Tsuchiya hep-th/9811220.

We see a strong hysteresis at N = 16.

Figure 4: The hysteresis cycle of (Upper) $\langle S \rangle/N^2$ and (Lower) $\langle \frac{1}{N} Tr A_{\mu}^2 \rangle$.

5 Multi-fuzzy-sphere state

The matrix model accommodates the multi-fuzzy-sphere solution.

$$A_{\mu}=lphaegin{pmatrix} oldsymbol{J}_{\mu}^{(n_1)}&&&&\ oldsymbol{J}_{\mu}^{(n_2)}&&&&\ &&\ddots&&\ &&&oldsymbol{J}_{\mu}^{(n_k)} \end{pmatrix}.$$

- $ullet egin{aligned} oldsymbol{J}_{\mu}^{(n_a)} \colon & ext{The n_a-dimensional irrep. of } SU(2). \ n_1 + n_2 + \cdots + n_k = N. \end{aligned}$
- The eigenvalues of Q are peaked at $r_a^2 = \frac{\alpha^2}{4}(n_a^2 1)$.
- The classical energy is $S=-\frac{\alpha^4 N}{24} \, \Sigma_{a=1}^k (n_a^3-n_a)$. Higher than that of the one-fuzzy-sphere state $A_\mu=\alpha J_\mu$.

We initiate the simulation from $A_{\mu}^{(0)} = 0$ for

$$N=16, \alpha=2.0 \in (\text{fuzzy sphere phase}).$$

The multi-fuzzy sphere is realized as a metastable state.

$$A_{\mu}^{(0)} = 0 \quad
ightarrow \cdots$$
 initial state $A_{\mu} = lpha \left(egin{array}{cccc} J_{\mu}^{(6
ightarrow 5
ightarrow 4
ightarrow 4
ightarrow 2
ightarrow 2$

Figure 5: The history of the vacuum expectation value of the action $\langle S \rangle$ (left), and the eigenvalues of Q (right) against the sweeping time, for N=16, $\alpha=2.0$.

Metastability of the multi-fuzzy-sphere state

We compare the dependence of the multi-fuzzy-sphere state on k, α, N .

We initiate the simulation from

$$A_{\mu}^{(0)}=lpha J_{\mu}^{(n)}\otimes 1_{k imes k},$$

namely when $n=n_1=\cdots=n_k=\frac{N}{k}$.

- k dependence: N=16, $\alpha=10.0$ fixed. k=2,4,8. The sphere is more stable for smaller k (namely, larger $J_{\mu}^{(n)}$).
- α dependence: $N=16,\,k=8$ fixed. various α . The sphere is more stable for larger α .
- N dependence: k = 2, $\tilde{\alpha} = 40.0$ fixed. N = 8, 16, 32. The sphere is stable for larger N (commutative limit).

6 Conclusion

In this work, we have investigated the stability of the fuzzy sphere in the matrix model with the Chern-Simons term.

- The first-order phase transition between the Yang-Mills phase and the fuzzy sphere phase.
- ullet One-loop exactness at the large N in the fuzzy-sphere phase.

Future works:

- Extension to the supersymmetric case.
- Extension to the higher-dimensional case. fuzzy 2k-sphere, $S^2 \times S^2$,
- Dynamical generation of the gauge group.

Heat bath algorithm of the matrix model

(a) Warm-up: quadratic U(N) one-matrix model

We start with the simplest case - quadratic U(N) one-matrix model:

$$S=rac{N}{2}Tr\phi^2.$$

We analyze this model via the heat bath algorithm. To this end, we rewrite the U(N) matrix ϕ as

$$\phi_{ii} = rac{a_i}{\sqrt{N}}, \; \left\{ egin{array}{l} \phi_{ij} = rac{x_{ij} + iy_{ij}}{\sqrt{2N}} \ \phi_{ji} = rac{x_{ij} - iy_{ij}}{\sqrt{2N}}, \end{array}
ight. \; ext{(for } i < j).$$

The N^2 real quantities a_i, x_{ij}, y_{ij} comply with the independent normal Gaussian distribution.

$$egin{aligned} S &= rac{1}{2} \sum\limits_{i=1}^{N} a_i^2 + rac{1}{2} \sum\limits_{i < j} ((x_{ij})^2 + (y_{ij})^2). \ Z &= \int \prod\limits_{i=1}^{N} da_i \prod\limits_{1 < i < j < N} dx_{ij} dy_{ij} \exp\left(-rac{1}{2} \sum\limits_{i=1}^{N} a_i^2 - rac{1}{2} \sum\limits_{1 < i < j < N} ((x_{ij})^2 + (y_{ij})^2)
ight). \end{aligned}$$

 a_i, x_{ij}, y_{ij} are updated by the Gaussian random number.

Generation of the uniform random number

We use the congruence method.

- ullet We give the random seed z_1 , such as $a_1=$ time().
- We solve the recursion formula

$$z_{k+1} = az_k + c \pmod{2^{31} - 1}$$
.

The choice $(a, c) = (5^{11}, 0)$ is known to give a good pseudorandom number.

• The sequence $\{\frac{z_k}{2^{31}-1}\}$ gives a uniform pseudo-random number [0:1].

Generation of the Gaussian random number

- We take two uniform random numbers $x, y \in [0:1]$.
- We introduce the quantity $r = \sqrt{-a^2 \log x^2}$. This complies with the probability distribution

$$P(r)dr=P(x)rac{dx}{dr}dr=rac{2r}{a^2}\exp\left(-rac{r^2}{a^2}
ight).$$

• We next introduce the quantities

$$X = r\cos(2\pi y), \quad Y = r\sin(2\pi y).$$

They comply with the probability distribution

$$P(r)drdy \propto \exp\left(-rac{1}{a^2}(X^2+Y^2)
ight).$$

(b) The bosonic IIB matrix model

T. Hotta, J. Nishimura and A. Tsuchiya hep-th/9811220.

We investigate the d-dimensional bosonic IIB matrix model via the the heat bath algorithm:

$$S = -rac{N}{4} \sum_{\mu,
u=1}^d Tr[A_\mu,A_
u]^2 = -rac{N}{2} \sum_{1 \leq \mu <
u \leq d} Tr\{A_\mu,A_
u\}^2 + 2N \sum_{\mu <
u} Tr(A_\mu^2 A_
u^2).$$

This action is equivalent to \tilde{S} , after integrating out $Q_{\mu\nu}$ (where $G_{\mu\nu}=\{A_{\mu},A_{\nu}\}$):

$$egin{array}{lll} ilde{S} &=& \sum \limits_{\mu <
u} \left(rac{N}{2} Tr Q_{\mu
u}^2 - N Tr (Q_{\mu
u} G_{\mu
u}) + 2 N Tr (A_{\mu}^2 A_{
u}^2)
ight) \ &=& rac{N}{2} \sum \limits_{\mu <
u} Tr (Q_{\mu
u} - G_{\mu
u})^2 + S. \end{array}$$

Then, $Q_{\mu\nu}$ is updated as

$$(Q_{\mu
u})_{ii} = rac{a_i}{\sqrt{N}} + (G_{\mu
u})_{ii}, \ \ (Q_{\mu
u})_{ij} = rac{x_{ij} + iy_{ij}}{\sqrt{2N}} + (G_{\mu
u})_{ij},$$

We next update A_{λ} . We extract the dependence of A_{λ} .

$$egin{aligned} ilde{S} &= -NTr(T_\lambda A_\lambda) + 2NTr(S_\lambda A_\lambda^2) + \cdots, ext{ where} \ S_\lambda &= \sum\limits_{\mu
eq \lambda} (A_\mu^2), \ T_\lambda &= \sum\limits_{\mu
eq \lambda} (A_\mu Q_{\lambda\mu} + Q_{\lambda\mu} A_\mu). \end{aligned}$$

• The diagonal part A_{λ} is updated by extracting the dependence of $(A_{\lambda})_{ii}$:

$$egin{aligned} ilde{S} &= 2N(S_\lambda)_{ii}(A_\lambda)_{ii}^2 - 4Nh_i(A_\lambda)_{ii}, ext{ where} \ h_i &= rac{N}{4}[(T_\lambda)_{ii} - 2\sum\limits_{j
eq i}((S_\lambda)_{ji}(A_\lambda)_{ij} + (S_\lambda)_{ij}(A_\lambda)_{ji})]. \end{aligned}$$

Then, $(A_{\lambda})_{ii}$ is updated as

$$(A_\lambda)_{ii} = rac{a_i}{\sqrt{4N(S_\lambda)_{ii}}} + rac{h_i}{(S_\lambda)_{ii}}.$$

• The other components $(A_{\lambda})_{ij}$ are updated likewise by extracting their dependence:

$$egin{aligned} ilde{S} &= 2Nc_{ij} |(A_\lambda)_{ij}|^2 - 2Nh_{ji}(A_\lambda)_{ij}, ext{ where} \ c_{ij} &= (S_\lambda)_{ii} + (S_\lambda)_{jj}, \ h_{ij} &= rac{1}{2} (T_\lambda)_{ij} - \sum\limits_{k
eq i} (S_\lambda)_{ik} (A_\lambda)_{kj} - \sum\limits_{k
eq j} (S_\lambda)_{kj} (A_\lambda)_{ik}. \end{aligned}$$

Then, $(A_{\lambda})_{ij}$ are updated as

$$(A_\lambda)_{ij} = rac{x_{ij} + iy_{ij}}{\sqrt{4Nh_{ij}}} + rac{h_{ij}}{c_{ij}}.$$

(c) Extension to the bosonic IIB matrix model with the Chern-Simons term

The Chern-Simons term is *linear* with respect to each A_{μ} . We have only to replace T_{λ} as (for d=3)

$$T_{\lambda}^{CS} = T_{\lambda} + 3g\epsilon_{\lambda
u_1
u_2}A_{
u_1}A_{
u_2}.$$