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1 Introduction

Large-N reduced models are the most powerful candi-
dates for the constructive definition of superstring theory.

e Dimensional reduction of N/ = 1 10-dimensional SYM
theory to 0 dimension.
A, and v are N X N Hermitian matrices.

* A,: 10-dimensional vectors
* 1: 10-dimensional Majorana-Weyl (i.e. 16-component)

spinors

e Matrix regularization of the Schild form of the Green-
Schwarz action of the type IIB superstring theory.

The action of the IIB matrix model does not include
the integral.

The numerical treatment is easier than that for the
quantum field theory!



2 Heat bath algorithm of the matrix model

In this talk, we focus on the heat bath algorithm of the
bosonic part of the matrix model.

The treatment of the fermions entails the hybrid Monte
Carlo simulation, and we do not delve into the fermions’
analysis here.

(a) Quadratic U(IN) one-matrix model I

We start with the simplest case — quadratic U (IN) one-
matrix model:

N 2
S = ?T’rqﬁ .

To analyze this model via the heat bath algorithm, we
rewrite the U (IN) matrix ¢ as

a; pij = Tt S
Qi = TN $ij3%ij (for 7 < j).

¢jz’ — V2N ?
The N? real quantities a;, ;;, y;; comply with the inde-
pendent normal Gaussian distribution.

S—l N 2 1 2 2
— 5121 a; + 2 > ((zs5)” + (y55)7)-

i<j

N 1N 2 1 2 2
Z=[1lda; I dmidyexp|—Y al—= > ((@y)*+ wi)?)]-
i=1 1<i<j<N 201 2 1<i<j<N

ai, Tij,Yi; are updated by the Gaussian random number.



Generation of the uniform random number

We use the congruence method to generate the uniform
random number.

e We give the random seed z;, such as a; = time().
e We solve the recursion formula
Zp41 = azp + ¢ (mod 2% —1).

The choice (a,c) = (5'1,0) is known to give a good
pseudo-random number.

e The sequence {,;i*} gives a uniform pseudo-random
number [0:1].

Generation of the Gaussian random number

e We take two uniform random numbers =,y € [0 : 1].

e We introduce the quantity » = +/—a?logx?. This
complies with the probability distribution

27 72
P(r)dr = P(a:)—d'r = exp| -]
e We next introduce the quantities
X =rcos(2wy), Y = rsin(2my).
They comply with the probability distribution

1
P(r)drdy x exp (——2()(2 + Y2)> .
a



(b) Quartic U(NN) one-matrix model

We next analyze the quartic one-matrix model via the
heat-bath algorithm:

N N
S == ;T'r’¢2 — gTT'r¢4.

This action is unbounded below.
However, we can avoid the divergence in the large-/N
limit, due to the metastability of the origin.

We introduce the auxiliary fields Q (where a = \/g) in
order to render the action quadratic:

= N 2, N 2 N 212
S = ETrqb + ET’I’Q — aNTrQo¢* = ETT‘(Q — agp) + S.

We update Q as

a Tij + 1Yij

co — i 2 .. . — 2 ..
Qu — \/N + a(d) )zza ng — \/m + a(¢ )zga

where a;, x;j, y;; comply with the normal Gaussian dis-
tribution.



In updating the diagonal part ¢;;, we extract the de-
pendence of ¢;;:

~ N
§ = —(¢a)’ (1 — 20Q) —N iy (@ 3 (£5iQis + Qiidig)) -

:ci

=h;

Then, ¢;; is updated as

a; i hz
vV NCz' C; .

We likewise extract the ¢;; dependence:

S = N(1-— a(jS + Qjj)) |pij|? — N(pijhji + ¢jihij), where

:cij

Pii =

hij = a( X (PinQrj + X Qindrj))-
k+#j k#1

Then, ¢;; is updated as follows:
Tij + 1Yij + hij
2Ncij Cij

Pij =

The legitimacy of the algorithm is ascertained by check-
ing the following results (as N — oo):
E.Brezin, C.Itzykson, G.Parisi and J.Zuber, Comm. Math. Phys. 59, 35 (1978).

2

1+ +/1T—12g9

1 1
(—Tr¢?) = §a2(4 — a?), where a® =
The eigenvalue distribution is given by

1
p(x) = 2—(—ga:2 — 2ga® + 1)/4a2 — z.
0
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Figure 1: The plot of (xTr@¢?) for N = 32.



(c) The bosonic IIB matrix model

T. Hotta, J. Nishimura and A. Tsuchiya hep-th/9811220.

We investigate the bosonic IIB matrix model via the
the heat-bath algorithm:

N d
- ¥ T?“[AM,A,,]2

S =
n,r=1
N 2 2 42
= —— Y Tr{A,,A}"+2N Y Tr(AJA)),
2 1<p<v<d 1<p<v<d H

defined in the d-dimensional Euclidean space.

This action is equivalent to S , after integrating out Q.
(where G,,, = {A,, AL}):

Q N 2 2 A2
1<p<v<d \ 2 H -

N
=~ Y Tr(Qu—Gu)+S.

2 1<p<v<d

Then, Q,, is updated as

a Tij + 1Yij

(Quv)ii = TJZ\T + (Guv)iis (Quv)ij = JIN + (Guv)ijs




We next update A,. We extract the dependence of Aj.

5’ = —NT’I‘(T)\A)\) + 2NT’I’(S)\A§) + e ’ where
Sa= X (Ai)a = X (ANQAM + QAuAu)°
HFEA TED

e The diagonal part A, is updated by extracting the
dependence of (A,)i:

S’ = 2N(S)\)zz(Au)3z — 4th(A#)m, where
By = (T — 2 5 ((S)5(A0)s + (52)i(A2);0)]

vy
Then, (Ay); is updated as
(A= iy
A)ii = :
\/4N(S)\)ii (Sx)ii

e The other components (A,);; are updated likewise by
extracting their dependence:

,S~' = 2Ncij|(A>\)ij|2 — 2Nhjz'(A)\)ij, where

cij = (Sx)ii + (Sx)jj»
1

hij = —(Ta)ij — > (SA)ik(Ax)kj — > (Sa)ri(Ar)ik-
2 k+#i k#j

Then, (A,):;; are updated as

xij +1Yi; | hij
Ay)ij = — :
( A) I 4Nh7;j * Cij

The following Schwinger-Dyson equation serves as the
consistency check of the algorithm.

1 o 1
_<NTT[AM? A7) =d(1 — ﬁ)~



3 Matrix model with the Chern-Simons term

The generalizations of the IIB matrix model have been
hitherto considered in order to accommodate the curved-
space background.

The most typical alteration is the addition of the Chern-
Simons term.

1 3 5 2t 3
4 pr=1 3 =1

defined in the three-dimensional spacetime.
Its equation of motion

[Aps [Aus Av]] + i€y py[Ap, Ax] = 0
accommodates the S? fuzzy sphere classical solution

A, = ad,, where [J,,J,] = t€,,,J,.

10



The algorithm is similar, since the Chern-Simons term
is linear with respect to each A;, A; and A;.

T. Azuma, S. Bal, K. Nagao and J. Nishimura, hep-th/0401038
We likewise introduce the auxiliary field Q,,, as

- N
S = Z (—T’I"QZV — NTT(QMVGMI/) + 2NTT(AZA12/ )
1<p<v<3 2

2taN
+?€,uupTTAp,Al/Ap-

Q.. can be updated via the Gaussian variables:
In updating A,, its dependence is extracted as

S = —NTr(TrA,) + 2NTr(SyA2%) + .-+, where

Sx= X (Ai)v
BFEA

TA p— Z}\(AHQAN —|— Q)\MAH) \—2’1:(16)\“VA“AVJ
nr The only difference!!

Other than the alteration of 7', the algorithm is totally
parallel to the bosonic IIB matrix model!

Main results'

e The first-order phase transition, as we vary the pa-
rameter o.
Lower critical point (A{) = aJ), start) al) ~ %,
Higher critical point (A{Y) = 0 start) al®) ~ 0.66.

* The Yang-Mills phase (a < a.)
The fuzzy sphere is unstable.

* The fuzzy sphere phase (a > ag;)
The fuzzy sphere is stable.

® One-loop dominance:

The higher-loop effect is suppressed for N — oo.

11
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Figure 2: The hysteresis cycle of (Upper) (S)/N? and (Lower) <%T’I’Ai>.
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4 Conclusion

In this talk, we have reviewed the basic technicality of the
heat bath algorithm of the large-IN reduced model.

The simulation of the IIB matrix model is much easier
than the quantum field theory, since the IIB matrix model
is the totally reduced model.

In hep-th /0401038, we investigated the matrix model with
the Chern-Simons term, to deepen the understanding of
the fuzzy-sphere background.

Miscellaneous future directions (of hep-th/0401038)
e Understanding of the dynamical generation of the gauge
group.

e The numerical treatment of the supersymmetric case
via the hybrid Monte Carlo simulation.

e Extension to the higher-dimensional case:
S?k fuzzy sphere, S? x S? fuzzy sphere - - -
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