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1 Introduction

Motivations of fuzzy manifold studies:
e Prototype of the curved-space background in the large-N reduced models.
e Dynamical generation of spacetime / gauge group.

A plethora of works for the fuzzy sphere physics:

hep-th/0101102,0103192, 0204256 0209057 ,0301055,0303120, 0307007 , 0312241, 0401038 0403242, 0405096 , 0405277 , 0410263,
0412303,0412312,0504217 - - -

Four-dimensional fuzzy manifolds:

S? x S%, 8* =8S0(5)/U(2), CP? = SU(3)/U(2), - - -.

These fuzzy manifolds are compact, and thus realized by finite matrices.

We focus on the gauge theory on fuzzy S? x S%:
= We obtain Ry as a scalar field.
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2 Fuzzy spaces S} and S} X S%_

Definitions of fuzzy S2I

x; = (¢, x2, x3) = (Hermitian operators)

- 2 2 2 2
(i, ;] = tAN€ERTE, T + T, + 23 =R, An = ~—

An = (NC parameter) = O([length]').

They are obtained from the N-dimensional representation of su(2) A;:

2R , , N?—1
Xr; = AN)\z'a AN = m, where [)\z,)\J] = Zez’jk:)\k;a )‘z = T

(algebra of functions f on S%) < (matrix algebra Mat (N, C)):
47 R?

/szvf: tr f.

N — oo (R fixed) limit : commutative S% is recovered.
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Definition of fuzzy S} X S%_

AL, )\f = N (INgr)-dimensional representation of su(2) algebra:

—1

N2
AL AT = deijedp, AT AT] = deindy, [AF, AT =0, where (A[F)? = L’i
This representation is realized by the tensor product:
A=A ®1ng A =1n, ® A
(algebra of functions f on S}, X S?VR) = (matrix algebra Mat (N, C)),
where N = N; Ng.

Normalized coordinate function

2R
z = - AP (2))? = (2)? = R
J(Np,r)? — 1

This space is a regularization of S3, x S%, C R".

Normalized integral of a function f € S, x S}, :

v
—tr f, where we define the volume V = 167?R*.

/S%VLxS%,Rf =N
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Quantum plane limit Rg'

Tangential coordinate x; ; near the ”north pole”:

For R* = N6/2, we obtain
2R 2R
] i——/R? — 22 — z2 = i6(1 + O(1/N)).

[, x2] = ’I,ng — ZW

Algebra of the quantum plane [z, z,] = 10 (R, N — oo, 0 fixed).

The fuzzy S%; x S} case: (R? = Np,r0r,r/2)

] J

[a:f, azf] — ieinL, [a:f, :I:R] — ieinR, [w,f’, :I:f] = 0.

Integral of a function f(z) € S}, X S?VR:

/S%VLXS%VR f(@) = 4m*010ptr f(x) = [ps f(@).
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3 Gauge theory on fuzzy S?% X S?VR

Construct S?V X S?V as ”submanifold” of RS.

Consider a multi-matrix model with 6 dynamical fields BL E,

1 1 .
S = ? /S§V xS2, <5F’ia,ijia,jb T L T+ ‘PR) , Where
L R
1 N; g —1
rm = g (BB - NEm L),
R L(R L(R 1
Fir(r)jL(r) = @(2[32( ', Bi'] + €ijiBy! )) Firjr = E[BiL’B?]'

Invariant under SU(2); x SU(2)r and U(N).
Equation of motion

2

N2—1 , . .
{B},(Bj)? — ——1} + (B} + ieiju B} By) + ieijx[ B}, (By + iexrs By B)] + [B}, [B]!, B}]] = 0.

Classical solution F' = ¢ = 0 = BL(R) = )\L(R)

Expansion around the classical solution By = A + RAY.

Gauge transformation of the fluctuation : A*"¥ — A% — =UvAIPUu-14+unf®, U,
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The field strength takes the form

© ((\L(R) L(R L(R) LL(R L(R) ,L(R
Fir(r),jL(R) = E(P‘i( L ATT) — AP AP 4 RIATYY, AL )]),
7
Fuusn = © (A, AF) — (X®, A%] 4 R[AL, A]) .

Commutative limit = separate the radial /tangential degrees of freedom.

¢r(r) 1s bounded for configurations with finite action.
1
PL(R) = E()‘ZL(R)AzL(R) + Af(R))\f(R)) + Af(R)AZL(R) = szf + A?ZL'@ — O(%)

A? is tangential in the commutative limit.

Standard electrodynamics on commutative S3, x S% :
L R

1
S _ F-t . F't 7 0
292 ./S§VL><SJ2VR ia,jb™ ia,jb

At the north pole, %ad)\f(R) = —Gijﬁ.
€T .

J
The field strength :FitL’jR = Bng-Cl)R — ang"l)L, (A,ECI)L(R) — _eijAf(R)),
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4 Formulation based on SO(6)

We cast the action on S%; x S%, into the formulation based on SO(6)

Embed S3, x S%, C R® (SO(3)r x SO(3)r C SO(6) ):

Bu = (Bf,,LaB;z)a Yu = ('7{[1’ ')’iR)’

L
i?

1 ?
BL:§+BZ.L BR=§—|-Bf~yf.

The gamma matrices’ relations:

YOt =~f, (T = —~F,

i

‘)Q;L’Yf = &;j + €KYy s %;R’Yf = —&;; — vt [V ’YJR] = 0.
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(1) separate B into two 4N X 4N matricesl

We break the symmetry as SO(6) — SO(3) x SO(3).

'Yf = 0; ® 1axa, 'YiR = 1sx2 ® 10;.

For the projector P = [(1 4 o; ® 0;), they satisfy v = iP~/P, P? = 1.

The degree of freedom reduces to two 2N X 2N matrices:

( 3\

1 1
By = (B{Jaz- ¥ 5) Qlays, Br=iP. (BiRaz- + 5) Rlays! P,

:E(L :XR

\ 7

The action S = S — 2S5}, recovers the action of S?VL X S%VR:

N2\?
2 2 2
Se¢ = 2Tr (BL — B% — 2) + 2Tr[By, Br],

S = —2Tr (32 — Nz) (—Bz — Nz)
break — L 4 R .
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(2) Embed B into one 8N x 8N/ matricesl

Construct the 8 X 8 gamma matrices:

0 ~*
r* = , where {T'*, TV} = 2§"".
()" o
Consider a single Hermitean 8N X 8N matrix:
I R 0 B~ 0 B~E
C =TI*B,+ (Cy+Cy) = + , Where
R—- 7 BL o —B® 0
—Co ! R j
—clL _CR
0 1101 () 1| 0 1
Cy = —-I'[TiTy = - , Ct=——T7IjTd=—
2 210 2 —-10

The following action is close to that of S%, x S% :
L R

2 N* 2 N* —1 2
S¢ = Tr|(C* — 7) = 8tr (B,B,, — T) + 4tr F,, F,,. where
Fio jb = (Biay Bjb| + 0ab€ijrBra-
But we have (BB, — #)2, instead of (B} B} — #)2 + (BfBf — %)2.

This is because its ground state should be some S°.
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We have to explicitly break the symmetry as SO(6) — SO(3) x SO(3).

We introduce the term
N Ng 2
Sbreak — r:[‘r((:’2 - —)((:’2 - —)
The following action recovers that of S}, X S2

2 2

N7 —1 Ng
S = SG - 2‘S’break = 8tr ((BzzL o LT)z + (BZ2R )2 + F,ul/Fp,l/) .

This formulation is useful in introducing fermions.

11
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5 Quantization

The quantization is straightforward by a path integral over the Hermitian matrices:
No need to fix the gauge (since the gauge group U(N) is compact).
Finite path integral for any fixed N.
(the square term of BZ-L ®) further suppresses the path integral).

Perturbation around the fuzzy sphere — Gauge fixing by usual BRST prescription:

SersT = S + %/tr (E[)‘uv [Bu, c]] — (%b - [)‘wBu])b) :

BRST transformation (such that s? = 0)

sB, = [B,,c], sc=cc, sc=0b, sb=0.
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6 Topologically nontrivial solutions on S%, X S%

Monopole solutionsl

L _ _LyN-—-my R _ R N—-—mpg

mL,R

where o =1 + , mpr < N.

Associated field strength and constraint term:

mL(R) L(R)
Fir(r),jL(R) = — oRgs CikTE s Fir jr = 0,
N2 -1
lim (BE®gEw _ N1
N—oo 4
Commutative limit: F = —27(mfwl4+mBwh), where w(®) = 47r1Rse,;jkwf(R)dwf(R)dwi(R).

This monopole solution is realized for matrix size N' = (N — myp)(N —mpg) # N2

This mismatch can be reconciled by combining this with another type of solution.
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Fluxon solutions'

BL(R) = diag(d;; LR) . ), where ZdL(R) f,(cR) = 1
0, type B.

type A,

Associated field strength and constraint term:

FiL(r)jL(R) = w1t ady )y Fipjr =0,
(BFBBE®) _ N? — 1) _ —3 type A,

N2_1
4

lim
N —o0

, type B.
Only the type A solution has a finite contribution:

2 pa 2
1§§N1;£ ( nR4 + 2R7}1N4 3) — 897; n, type A,
S 2 p4 _
7122'1,,13 (2 (N4 1)2) — 00, type B.

We call these type A solutions ”fluxons”.
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Combination of monopole and fluxon solutions'

N—
p | N @ ANy, 0
v .
0 dlag(dﬁl, oo dZI:n)
R N—mp
I, QA 0
BiR = N=me ‘ , Where
0 dlag(dfl, cee, dfn)
mp = —"Mmp=—m, n:m2.

The total action of this solution:

w 2 2
Sim) = ?(Qm + 2m~), as N — oo.

15
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7 Gauge theory on Ry from fuzzy S}, x S3

The most general noncommutative Ry (for p,v =1,2,3,4)

0 62 O 0
—6:2 O 0 0
0 0 0 0Os4
0 0 —63, O

[CEM, qu] — 7:9,“/, where Ol“/ =

. We define the coordinates X,, and ¢ as

2012 L 2034 R
Xip = B Xea= By

pHP) = B - NE® L (gl 4 (Bl
2 Niw

Scaling limit R? = N 03, = ;Ngb; — oot

X are the covariant coordinates on the tangential Rg as Np rp — oc:

16
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a(BLBI) = (XX, ete.
%(Bf—ki[BZL,B?{‘]) = eu%um(xnti[xmqﬂ]— olz[Xz,(Xl) 1>
(B HABEBE) = | (e ilXs, 9] — 5K, (X)),
%(BL i[BE, BY]) = 9121034(912+z[X1,Xz]+0”0""“¢L—0;21324((X1)2+(Xz)2))
e BEBE =Ny = Lory 2 ory D - (0 ()7 + ()7
b () (X))

02, R?
The terms from the S}, X S} action involving ¢™*:
—2(¢L)2 5 (ﬁbR)2 + O( )
03,4 01,
At R — oo, we obtain the action
1
S = - /([XIHXV] - iew)2°
29%601,03,

X, can be written as X,, =z, +10,,A,.
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U(1) instantons on R} I
1

We consider the self-dual case 0, = j€,,,00,,, namely 60, = 034(= 0).

The action for U(1) gauge theory on Ry:

(27)°

S =
29202

tr F,, F,,, where F,, = i([X,, X,] —10,,).

Complex coordinates: xi; = x| £+ 1x9, T4 p = X3 + x4
Commutation relation: [z ,,x ;| = 20044, (X1 0, 1| = (o, x| = 0.

Basis of the Fock space H for these coordinates: [ny,n2), 1,15 € N.

r_r|ni, ne) = V20+/ny + 1|ng + 1,n2), xip|ng,ne) = V20/ni|ny — 1,ns),
:B_R|n1,n2> =V 20\/ Nno + 1|’I’L1,’I’L2 -+ ].), iU_|_R|n1, ’I’Lz) = v201/n2|'n,1, Ny — ]_> .

Complex covariant coordinates: X7 = X; £ 1Xs, X4rp = X3 £ 1X,.

The action is rewritten as
2

S =

9262
Equation of motion: v, o[ Xa.0s (Fuaps)’] = 0.

18

tr (Z F+a,—aF+a,—a — X F—i—a,—l—bF—a,—b) ’ where Faa,bﬁ — [Xaaa X,Bb] - zoeaﬁéab
a a,b
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Finite-dimensional subvector space V,, C H.:

Vn = {|Zk93k>ak =1,2,.-- an}°

Solutions of the equation of motion:

X(n)(R) Sz,Lr)S' + k; Vi s Gie) (s -

e 7' € C: position of fluxons

n
® 5= ZIC::ozl |ik+n7jk+n><7:k:’ Jk:|7 with STS — 17 SST =1- kz—:l |7’k:7.7k:><7’k7.7k|

Py, : projection operator onto V,,.
8m3n

g2

87r2
Fu, = Py,0,, — S[X[")] = —tr (Py,) =
g

This is the U(1)-instanton solutions on Rj.

19
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8 Fermions

Commutative Dirac operator on S? X 82I

D4 — I‘”JN —|— 200.

The 8-component spinor Wy is split into two independent 4-component Dirac spinors.

Operators that anticommute with Dy,:

—1 0

e 6-dimensional chirality operator: I' = {TITITITETETE = .
This satisfies {D,,I'} =0, I'' =TI and I'? = 1.
The 8-component spinor is split as W3 = 1{0‘
V5

e Operators xrr = [''*®z;1g), which preserves SO(3) x SO(3) C SO(6).

They satisfy { D, xrr)} = {xz:Xr} = 0, X%z = 1.
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We introduce a projector Py = %(1 + ixLXR)-
P:=P, P,+P_=1, P,P_ =0, [Py,D,] =[Py, T]=0.

The projected space is preserved by D, and T'.

spinor Lagrangian : Sf = ¥{D,¥s = 9! D,W, + ' D,¥_, where ¥, = P, Uy,
Two ways to obtain a 4-component Dirac spinor:

e Impose the constraint P, ¥g = Ws.

e Add a mass term M_\IlgP_\Ilg, with M_ — oo.

At the north pole z; = =z =' (1,0,0),

—yiy 0

1
P+:— 1—|—’L
2 0 71117f% 2

Py actually projects onto a 4-dimensional subspace exactly.

1 .
= (1403 ® 03 Q o3) = diag(1,0,0,1,0,1,1,0).

21
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Gauged fuzzy Dirac and chirality operators'

Fuzzy analogs of D, and .

Natural fuzzy spinor action : Sy = ¥TC¥ (¥ = 8N x N matrix).

C can be split into fuzzy Dirac operator D and operator :

2
¥ =, ﬁ(I‘“\IJ)\,u — Cy¥), such that ¥ = 1.

Fuzzy Dirac operator:

A

N? R R
D =C - 7)2 =TI'*D, + 2Cy, where D,V = [A,,¥]|+A,¥.
=J, ¥

A

D, is a covariant derivative operator, i.e. Uﬁu@b — ﬁLU@b

(where D/, ¥ = [A,, 9] + UA U™
—4/,
D satisfies {D,T'} = 0, however {D, x} # 0:

{D,x} = 0(.).

22



”Gauge Theory on Fuzzy S? x S% and Regularization on Noncommutative R*” (hep-th/0503041), Takehiro Azuma, May. 16, 12:15 ~ 13:15

D% = (5" Fu + DD, + {T'*, Co} D), +2)1p.

=0

This corresponds to the D? on the curved space.

Projectors on the fuzzy spinors:
2 .
XL(r)¥ = N(I‘ZL(R)\I’Az’L(R) + Cf M),
We define the projection operators P, = %(1 + iXLXR)-

X1 =1, {X5,Xr} =0, (Xzxr)* =1,
[D?,T] = [¥**F,,,T] = [D?, Py] = [X*F,,, Py] = 0.

A

The projector no longer commutes with the fuzzy Dirac operator: [D, xrxr| # 0.

We have to add a mass term to reduce the degrees of freedom: M_\Ilgﬁ_\Ilg.

The complete action for a Dirac fermion on fuzzy S? x S2:

Sbirac = [ (T5(D + m)¥s + M_WiP_Us).

23
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9 Summary

In this paper, we have studied the following:
e Gauge theory on fuzzy S? X S? as a multi-matrix model.
e Alternative formulations using ” collective matrices” based on SO(6).
e Quantization by a finite path integral.
e The monopole and fluxon solution
e The quantum field theory in the flat noncommutative plane Rj.

e Fermionic term and the chiral Dirac operator.

24



