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1 Introduction

The studies of the fuzzy sphere are interesting from the
following points of view:

The fuzzy spheres play an important role as the proto-
type of the curved-space background.

The IIB matrix model is the most promising candidate
of the constructive definition of the superstring theory.

On the other hand, this has only a classical background,
which makes the perturbation around the curved space
impossible.

In order to evade this difficulty, the matrix models with
the Chern-Simons term have been extensively studied.
hep-th/0101102,0103192,0108002, 0204256,0207115,0209057,0301055,0303120,0307007,
0309264,0312241,0401038, 0403242,0405096

The fuzzy spheres appear as the classical solutions in
the presence of an external RR field (Myers effect):
R.Myers, hep-th/9910053



The interests of the higher-dimensional fuzzy S* spheres:

e Longitudinal 5-branes in the Matrix theory:
J.Castelino, S.Lee and W.Taylor, hep-th/9712105

e Four-dimensional noncommutative theory in the large-
N limit of the large- N reduced model:
Y.Kimura, hep-th/0204256,
T. Azuma, S. Bal, K.Nagao and J. Nishimura, hep-th/0405096

e Application to the quantum Hall effect.
K.Hasebe and Y. Kimura, hep-th/0310274

The purpose of this paper:

e The authors attempt to build the algebra of the fuzzy
S* spheres, retaining the SO(3) ® SO(2) symmetry.

e They build the associative star product for the fuzzy
S* spheres.



2 The algebra on the fuzzy S* sphere

To retain the SO(5) symmetry of the fuzzy S* sphere, one
has to introduce the extra degrees of freedom.

The algebra is realized by the 6-dimensional homoge-
neous space SO(5)/U(2).

Namely, the fuzzy S? sphere is attached on every point
of the S§* sphere.

S0(5)/U(2) ~ (50(5)/S0(4)) x (SO(4)/U(2))
~ \(50(5)150(4))1 X ‘(50(3)V/U(1))1 :
S4 sphere S? sphere

Such an algebra is constructed through the n-fold sym-
metric tensor product of the 5-dimensional gamma ma-
trices:

Gy = fFA®1®°°°®1)syrr£+'°°+(1®'°°®1®FA)sym,
n-fold f)roduct

where I' 4 satisfies the following Clifford algebra:
{FA, FB} - 26AB, (A, B, e — 1, 2, 3, 4, 5).
More explicitly, they are constructed as

' =03Q 0, 'y =02 Q 1axa, I's = 01 ® 1axo.

e G, is realized by the N = é(n + 1)(n + 2)(n + 3)-
dimensional matrices:
Unlike the S? fuzzy sphere, the S* fuzzy sphere is
realized by a limited size of the matrices.
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® G4 does not close with respect to the commutator.

G 4 and the commutator G5 = [G 4, Gg| satisfy the
following algebras:

(1) G% =n(n+4)1nxn,

(2) GapGap = —16n(n + 4)1N><N’

(3) [GaB,Gc] = 4(—04cGB + 6BcGA),

(4) [GaB,Gcp] = 4(0BcGap + 0apGBc — 04cGBD — 0BDG AC),

(5) GABCDEGBGCGDGE = 8(n + 2)GA.

1
= Gap =
AB "t

5 €aBcpEGcGpGE.

Here, we break the SO(5) rotational symmetry as
SO(5) - SO(3) ® SO(2),
and try to build the N = 2(2j5 4+ 1)-dimensional repre-
sentation.
Namely, we take the following tensor product:
(Pauli matrices) ® (spin-j rep. of SO(3)).

Then, the representation is constructed as

- 2
Xa:§0'3®Ta

- 4 1
(5)° X" = 50'1 X 12j+1a
1

X° = 50'2 ® 12541, Where
aabacv"': 1,2,3, 7:?.7""‘ :4a59
AaB,Ca”‘ =1,2,3,4,5,

[T6)s T = €Ty (T())* = 3 + 1)




This representation satisfies the following relations:

B 3
45(j +1)

(X4, XP] = eapcps X  XPXF, (otherwise).

a vbvyvce
645cr,bc)( X X 9

In general, it is impossible to resurrect the SO(5) rotational symme-

try via the following rescaling:

sa 20 e i B
X" = ?0'3 ® T;), X' = 50'7:—3 & 1241,

which satisfies the following commutation relations:

AAAAA

(X2, XY = o eeil(XeXiRT — XiXeXT + X1XIXe),

,32
N . | Ny A a e A A
(X%, X = ae‘”bcﬂ(XchXJ — XbPXIXe 4 XIXbX©),
"o 332 P
[X4, X5] — __ 'B 645achaXch.
4j(7 + 1)

The SO(5) symmetry is resurrected only if % = CIY — %

which is realized only for 3 = %

The matrix theory action for this fuzzy-4 sphere is

1 . 1/ . 2
= [dttr{_——(DpX*)?+ > [[X, X"] — “bCDEXCXDXE)
2Ry 4

1 . 2
+= <[Xa z] azCDEXCXDXE>

2

2
+ 1 <[X—4 Xvs] _ 3ﬁ2 6450DEXCXDXE>
bl a *
45(j + 1)



3 Associative product of the fuzzy S? sphere

The construction of the associative product for the fuzzy
S? sphere plays a pivotal role in the following S* case.

Here, we review the work for S?
K. Hayasaka, R. Nakayama and Y. Takaya, hep-th/0209240

We start with the star product of the arbitrary repre-
sentation:

£(@) % (2) = F(@)g(2) + AI(0u1(@)(B19(2))
b B[S AT T By 00, £ (@) 00+ Or0(a)) ).

n=2

Here, J is defined as

Jab — ,),,Z(Sab . mawb + ireabcwc,

(r = /(z')? + («2)2 + (2%)?) and has the following prop-
erties:

(1) maJ“b — meab =0,

(2) JabJac — JbaJca — O,

(3) Jab(ancb) — Jca(andb),

(4) JbaJdC(aaache) — _beJde _ JbEde’

(5) Jobigaebz. .., Janbu(gy ..., J¢) =0, (for n > 3).

From (1) and (2), » is a constant for x, product.
This is a necessary condition for x) to be a product on
the S? sphere.

f(r)*xg(@®) = g(x®) xx f(r) = f(r)g(z?).



We determine ng’)m, to satisfy the associativity:

[(f(w) *a g(x)) *x h(z) = f(z) xx (9(x) xa h(z)). J

e Up to the first order: for both (f(x) xx g(x)) *x h(x)
and f(x) *x (g(z) xx h(x)),
fah + AJ**{(8a£)(0sg)h + (8af)g(sh) + £(Dag)(Obh)}-

e To the second order, the difference
(f (x) *x g(2)) *x h(x) — f(x) *x (g(x) *x h(x)) is
N [(J?8J — T8, ™) (8£)(Dag) (8ph)
vanishes due to (3).
+ (1 —2x$)T*T (8,8, Bcgduh — 8. f BygdcBuh)].

This gives the constraint Xg?% = %

e By the same token, we derive the relation

1
X3 = — X (m—1)(m —2)P ... 2Pm2 P,
m. p

{P;} is the partition of n — m into m — 1 nonnegative integers.
22 1
. .

1
Xg’:?? = 5 (201n—3 _|_ 211?1—4 + C e _|_ 2n—411 + 2n—310) —

We thus obtain the following product:

F@) ag(@) = fg+ 5 Crn(X)J4b.. Jombn

X (Oay *** Oa,, f)(Opy *++Op,,g), Where
)\m

Cm(A) =

m!(1—A)(1 =2 (1 —(m —1)A)




For the unitary representation, this should reproduce
the ordinary SU(2) algebra and its Casimir:

(2%, %], = 2iAre®eze,

a

Then the rescaling y* = ;5 gives

1+ 2A
a ,.b - _abc, . c a a . (e
= 1€ * = = +1).
[y ¥l S e CINE j(G+1)
[ . ]_ ]_
Then, X is determined as \ = 350 3542
__ y(4) 1
A=A = %)

In this case, the coefficient C,,(\) is given by

25—m)! .
Cm()‘(.A)) _ (m?!(zj))z (for m < 2.7)7
! 00 (for m > 2j).

This product is limited to the finite representation!
We denote this product as .

Especially for 3 = %, this gives

2% x ¥ = 120, + ire®®x, 1 xx® = x* x 1 = x°.

This corresponds to the algebra of the Pauli matrices o,
and the unit matrices 1;».



A=A = gl

J T 25+2)

In this case, the coefficient is given by

B), _ (1™ (25 +1)!
Cm(A;7) = :
m! (254+14+m)!
This has no divergence for any m. Therefore, this prod-

uct is applicable to an arbitrary size of representation.
We denote this product as e.

, (for any m).

Especially for 3 = %, this gives

4 1 1 1
% e :Bb — g(mawb _ _,’,26ab) + §,',,2($’~ab _ _,r,eabcmc,
20 )
rt ez ezt = ——ax%xlrt — 1P ...
9 27

The algebra of the Pauli matrices is not realized.

On the other hand, the integration on the sphere gives
4 471
/dﬂw“ oz’ = —ﬂ-rzéab, /dﬂaz“ oz’e = —27‘360'1)6 .
/ 9 Y 27

~~ ~~

=troeg® =troecboe

The trace corresponds to the product of the Pauli ma-
trices.
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4 Noncommutative product on (S4)j

We construct the star product on the fuzzy S* sphere.

Here, we focus on the finite set of the function, and
focus on the product x for A = )\g-A).

(S? ® S? parameterization of S*|

S* representation is expressed by the tensor product

(2 X 2 matrices spanned by 1layx2,0,)
® ((27 +1) X (2j + 1) matrices spanned by 1341, T(}))-

We assign the S? coordinate for each representation as
xl,x?, x> : (for the 2 X 2 rep. of S?),
yl,y?,y3: (for the (25 +1) X (27 + 1) rep. of S?).
We define the radii of the S? spheres as

r=/(z%)? p=(y*)>

The correspondence with the matrices is

a wa jya
& T < ~——,
2 )] p

o

We then find the following correspondence
(for a = %, B = 3R):

~ 3,,a
X = IJ—?@ ®TE < X = Rey” (for a = 1,2, 3),

rp
1—3

Xi=Roi_3 @ 13541 < Xi =B (for i = 4,5).

r
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This mapping S? ® S? — S* gives a double cover of the
S* sphere:

The following two points on S? ® S* fall onto the same
point on S*:

1 2 3 1 2 3
p. (CIB s &L 7$),(yay 7y))652 (33320),
+
r p
1 .2 _ .3 a2 3
P’: (:B ,337 w)’( y? y7 y))ESE (m?’SO).
T p

The overlapping point of S? (namely, the equator x> = 0)
constitutes S ® S2.

This S' ® S? is mapped on the S’ circle C:
c = {(X4.--, X)) X'=X*=X*=0,X*"+ X° = R?*}.

Therefore, the inverse map S* — Si@Sz is multi-valued
(indeterminate) on the circle:

rX* rX° rD(X)
wl(X): R 7372(X): R 7533(X): R
pX*
“UX) = here

D(X) = (X1)? + (X2)? + (X?)2.

The mapping §* — §? ® S? is likewise obtained by the
replacement D(X) = —D(X). It is also indeterminate
on C.
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It is straightforward to build the noncommutative prod-
uct on (S?);, from the star product on fuzzy S? sphere:

To this end, we combine the noncommutative product
for each S?:

F(X) x G(X)
OF(X)o0G(X
— F(X)G(X) + (Tzéab _ wawb 1 ,’:,r,eabcwC) ( ) ( )
ox® Ox®
OF(X)0G(X
+)‘(p6ab o ,yayb s ,ipeabcyC) ( ) ( )
dy*  Oy°

—|—)\(T25ab o mawb + ’I:’I“Eabcwc)
O°F(X) PG(X) |

X (p?6% — yy© + ipe?fyl)

dx*0y? dxboye

In this way, we can easily build the product for the S*
sphere, by reducing the symmetry as

SO(5) — SO(3) ® SO(2).
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[Functions on the noncommutative (S%) JI

The functions of the fuzzy (S%); are given by the prod-
uct of the functions on the two fuzzy S*:

e First S?: spanned by 1, "’TG

a a1402...y%27
e Second S?: spanned by 1, y?, cee Y ypzj Y

Then, the functions of the fuzzy (S?); are given by

a a a,,a a a9, a,,a a9,
T yl wyl yl...y2] wylo.oyzj
17 ’ ’ 9° %% ’

r p  Tp p2i

rp2

The functions on (S*); are expressed via X as

Xi D(X)
R R

X% ... X% X'X%...X% X3X%...X9j
D(X)» ’ RD(X)* ' RD(X)"

:yal...yazj :wi_3ya‘1...ya2j _xgya‘]_...yazj

p2j rpzj o rpzj

, ,...,

\

The number of the independent function is
4 x (25 +1)* = N>,

Thus, the function of (S*); corresponds to the 2(2j+1) X
2(27 4+ 1) hermitian matrices.
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The spherical harmonics of fuzzy S* is given by Y7, 1,1.m.

The degree of freedom is (up to order 1)

ool l I+1)(1+2)2(1+3
5 LoE ey _ U+ +2)°A+3)
11=0 !220 l3=0m=—I3 12

/

degree of freedom for t‘};e l;-order polynomials

This is not a square number. This makes it difficult to establish the
isomorphism

(matrices) <> (polynomial on S4).

This construction avoids this problem, since they introduce a non-polynomial
function.

These functions are not well-defined on the equator C, since these
functions are indeterminate on C.

However, these singularities are not serious in the noncommutative
field theory.

The derivative is given by the commutator V 4 F'( X ) = }%[XA, F(X)]x-

We define the star product on the equator C by the limit outside C,
such that the singularities are canceled on C.

In this sense, the products and derivatives are “well-defined”.

This is evident from the matrix << function correspondence, because
the matrix configuration does not have any singularity.
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5 Noncommutative product on (S%) j=1

In this section, we scrutinize the simplest case 3 = % in

more detail.

In principle, we can obtain the explicit form of the star
product by replacing (z%, y*) with X*.

On the other hand, it is easier to determine the product
for 3 = %, such that it reproduces the multiplication rule.

For j = %, we have the following functions:
) b & B z'=3 D(X) oz X oy
’\R_ T ’v R r}’\D - pl’

—zt _yo

o

X w3ya Xz'xa wi—3ya

R rp RD(X) rp
wl:;a
TP

~

The star products of these functions can be built from
the S? algebra (and likewise for ¥):

p

r® x° r?® o b €

1x1=1,1x — =—%1=—, — x— = §%° 4 4,
r r ror r

This gives the following multiplication laws:
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Xe Xt oL X Xi X7 ,
— k —— a abc <~ — — 033 1,
R R bTaenxy R TR 4T
X Xxi . XiXxe X Xe Xixe
— % 1€ij———, * —— ij
R R RD(X) R R RD(X)
x* D(X) = X° D(X) X Xx°
*
D(X) R R’ R DX) R’
X D(X) ' D(X) X' . X9
o —i€ij—, —— = i€i;—,
R R R R R R
Xi  Xixe 5 Xo L X
* —————— i 1€;
R " RD(X) px) TR
Xixe X9 _ o Xe .o X
S /- 1, 7' 1,
RD(X) " D(x) T R
xXa Xb 6 + ] c
* a 1€abe 7 v
D(X) " D(X) b tabe p (X))’
Xixe Xt o XL XX
* ab™ abec S o\
RD(X)  D(X) "R T RD(X)’
X*  XiXx® o XL XX
* ab™ abc o o~/ <\
D(X) " RD(X) "R T RD(X)’
IS 'C 5 DX L ooxe
— % a abc™
R T D(X) I T
xe X” 5 DX Lo oxe
D(X) ab R L€abc R 9
Xixe D(X) . Xixe
* — 7:.7
RD(X)" R “““RD(X)’
D(X) Xixe . Xxixe
* 1€ —————
R  RD(X) "RD(X)’
X* D(X) xe D(X) X
* * =
R R D(X)’ R R  D(X)’
X*  Xixt s X Xixe
* 1jVab 5~ = €ijCabec S5
R~ RD(x) ~ ‘% it pD(X)’
Xixe . D & - X7 N Xixe
— ok — —i€ij0ab— + €ij€abe v
RD(X) R iTab g TR RD(X)’
Xixe  Xix® xe
* 61,60, 61 abc <\
RD(X)  RD(X) §0ab + 203 €abe y 5y
. D(X) Xe
+Z€ij5abT - eijea,bcf,
D(X) D
(x), DX) _ |
R R
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The product of 37 =

the derivative.

1
2

is at most of the second order of

Then, the star product is constrained as

® The product should agree with the multiplication laws

of each function.

o R =

LI OF 0G 2 OF 0G
“9xXeaxt ' Y 9XioXi
L IO OF 8G 4 OF 9G
a,i 8Xe 6X1' i,a 8X1. 0Xe
LI 9?F 8G « OF 9°G
ey Xad Xt X sbegXa gXboXcC
s 9’F 8G s OF &G
abi g Xag Xt 9Xi a9 Xa XX
L oo OF 989G a0 OF G
WP Y XadXi X “b 9Xi 9X2dXb
+ 4y O°F 0G az) OF  0*°G
ai,j 9X29X1 X7 a,ij 0Xe9XioXi
L o9 OF 8G 1 O°F 8G
“a g Xi §XadX I Ue 9XigXi dXa
+ s °’F  9G ae) OF %G
Pk gxiaxXiaxt T 9XiaXioX*
L gan OF PG ay OF &G
abed g XadXb HXcdXd GklgXigXi XkOX!
L L 9?F %G 20 O°F %G
ab,ci 8X0’8Xb aXcaX,L ai,bcaxaaxi aXba_X'c
+ L@ *F °G (22) O°F oG
W P9XagXbIXidXi =~ IPHXigXi §XdX?
Lo 9?F 9?G
@b g xadXi XX
LY ?F 892G 25y O°F e
. 1 25 .
The coefficients L( )~ L(- ) are determined such that
a,b 1j,ak

(X 4)2 should be constant; namely

f(R) * G(X) = G(X) x f(R) = f(R)G(X).

One of such solutions is given by
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c

L) = R%6. — X°X® + iR%€ape

) T)I)’
y D(X
L,Ei) = de,;j — X*X7 + iRZEiji(R ),
. Xixe
L) = —X°X'+iR%;———,
’ RD(X)
. Xixe
L1(l4a)' - —_Xoext_ iR2€ij7,
’ RD(X)
R? — D(X)? R? — D(X)?
LY, = ) (X260 + X600 — (X)” yaxoxe
’ 2 D(X)?
+_R2—D(X)2(X X)X x4
z G,C C
9 d €ped D(X)
R? — D(X)2 R2 — D(X)2
L), = ) (X80 + X600) — (X)” yaxoxe
’ 2 D(X)?
+_R2—D(X)2(X . x4
1 2 €abd €acd D(X)
R .

L, = ——X“X”Xl + i DX )e,jX’X“Xb,

L®, = —D(X)zXzéab + XX X — iD(X)€aue XX + iRD(X)bapes; X
. R - .
D(X)GZJX]X X" — Re;j€qp. X’ XC,

LY, = —D(X)’X'0a + X°X*X* — iD(X)€ape XX — iRD(X)0apes; X

R
iy (X)e,,X’X“X" + Re;j€q. X X6,
L) = L xexoxi_; €; X X*XP,
2 D(X)
D(X)? D(X
L) = (2 ) X%6;; + iR’ X %€y ; ),
L((1112) — _iEXa(eika + eiji) k ,
J 2 D(X)
D(X)? D(X
L) = (2 ) Xfus,-,-+iR2X“e,-,-7§2 ),
LiY = iBX“(eika + € X?) - :
'LJ, 2 D(X)
RD(X D(X)?
LS,EI? = _Z#(éike_jl + 5jk:€il)Xl + (4 ) (eikejl + eilejk)Xl,
RD(X D(X)?
ng,lj? = Z#(@jekl +5ik€jl)Xl — (X) (€ij€r + Gikejl)Xl.
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17
Lopraa

18
L'z(ij,k)l

7,19

ab,ci

o)

at,bc

7).

ab,ij

L(22)

ij,ab

33

ai,bj

79

ai,jk

729

ij,ak

D(X)? — D(X)?
R? — D(X)?)(84ac0ba + 00ddbe Xexbxex«
( (X)*)(0acldba + 0aadee) + 2D (X)?
R? — D(X)? Xe€
+'L ( ) (XaXcebde + XaXdebce + XbXdeace + Xcheade)i
D(X)
R? — D(X)?
- 4 ( ) (eaceebdf + eadeebcf)XeXf’
D( )*

(6zk61l + 6zl51k) +

(€ix€ji + €u€jr),

( )

D(Xx)*
4

D X 2
(X) T L X (X0 + X ) — i —

L RD(X)

Xi (Xbea.cd + Xaebcd)Xd

(Xbaac + Xaébc)einj - E(Xbeacd + Xaebcd)eindea

_D(X)ZXi(Xcéab + Xb5ac) _ ,LD(2X) Xi(Xcea,bd + Xbéacd)Xd
—i%(X)(Xcéab + X%5,.)€ei; X7 + };(Xceabd + XP€qca)€i; X7 X4,
—%eikele’“XlX“Xb,

—%eikeleleX“Xb,

R2D(X)2%6,00 — D(X)?X X764, — R - D(X)zxax"&-j

+iR*D(X)0;j€apc X — iD(X) X X7 €05 X °
+iR?>D(X)?bap€ij ; )

D(X)?

— RD(X)?cij€ae X,

XX 6 + X96:),

D(X)? . )
(X) XX + X 0j1).
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The covariant derivatives are defined (and given) as

X G(X)),

oG 9’G
_ IO L& — 1 £© _ 1
(( b,a 6Xb + ( ) ( a,bc be,a BXbBXC

L@® —®) PG pon (11)) 3G>

- a,ij 13,

V.G(X)

abi — Tbhel 5 Xbg X AXidXi
oG 1 .
= —2760,(,6.}(C — 2 GinJXa' -
D(X) axt “D(X) aXi
R? — D(X)? 9?2G
_ ve Xb . Xa. Xdi
RD(x) (ComX T eeaX) X e
42 D(X)eqpe X X" s 24 xixe_2G
R Cabe axXbax:  cidCabe Xt X
2
n (X + e X XEX0— 2 F
D(X) ! dXidX1i

9’°G
— (@ -2 5+ @ -2 o+ R - 2R

0Xe9X?
16) (15)) ’G )

(13) (11) L
+(L —L ) + ( i,k _7k:1, aXJan

3 a,_7 a,] 9

oG
—2D(X)€ij an —

0X29Xi
Ginan

2
D(X) axe

1 ivays 9°G o ’G
—2— ;XXX ——_— —2D(X) X €;j————
D(X) dX*0X XX
. D(X)? e
I T T O

The field strength of the gauge field A 4(X) is (for 7 = %,
a =3 =3R):
Fap(X) = : ([XA xP), — iGABCDEXC * Xp x XE) )
R2 3R
where X4 = X4 + RAA,
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6 B-field background

In this section, we build the star product on the S* sphere,

in relation to the B-fields.
We introduce the following S? x S? parameterization of
the S* sphere:

X! = R cos 0, sin 0, cos P2, X2 = Rcos 0 sin 05 sin P2,
X% = Rcos@,cosfy, X*= Rsinb, Cos 1, X% = Rsin 6, sin 1.

This gives a double cover of the S* sphere. In S%, the
following two points are identified:

P = (0175019 029 902),
P = (m—0y,p1,m — 02, p2 + 7).

The B-field background which has the maximal sym-
metry of the two spheres S§% x §? is

ny | n2
B = o sin 0,d6dy, + o sin 0,d0B>d ;.

This is rewritten in terms of X4 as
B= 2 . X9dX"AdX°4 1
4D(X)3"" 4RD(X)

1
EBABdXA A dXB.

GijdXi A dX?

B g has the tangential condition B, X = 0.
(1% C n;

Bap = —— 5 2€abe X B;; = €ij
T ap(x)3T™” TV T 2RD(X)Y
nq .
By = —B;q = i X7 X,
2RD(X)* "

They are singular at the equator C, in which D(X) = 0.

22



The inverse matrix a“?, such that
O:ABBBC = 5AC — XAXC/R2, is

b 2D(X) . 2D(X)3
a’’ = ————€qpe X, a¥ = — - €ij
D) ’l’blR
. . 2D(X) .
a” = —a'" = ——¢; XI X"

’I’I,IR
This defines the Poisson bracket:

{F(X),G(X)}pB = %aABBAF(X)BBG(X).

AB

Via a”, we define the noncommutative product as

F(X)* G(X)

= F(X)G(X) +1i a?P 9,F(X) 95G(X)
1
_504‘43 a®? 9,00F (X) 8p0pG(X)

_% a’B (85 aP) {840cF(X) 0pG(X)
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7 Conclusion

In this paper, the authors built the noncommutative prod-
uct for the fuzzy S* sphere.

To this end, they broke the symmetry SO(5) to SO(3) x
SO(2).

This has enabled us to apply the algebra of the fuzzy
S? sphere.
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