Matrix Configurations for Spherical 4-branes and Non-Commutative Structures on S^4 hep-th/0402010

Ryuichi Nakayama and Yusuke Shimono

Journal Club at KEK presented by Takehiro Azuma¹ May 21st 2004, 12:15 ~

Contents

1	Introduction	2
2	The algebra on the fuzzy S^4 sphere	4
3	Associative product of the fuzzy S^2 sphere	7
4	Noncommutative product on $(S^4)_j$	11
5	Noncommutative product on $(S^4)_{j=rac{1}{2}}$	16
6	B-field background	22
7	Conclusion	24

¹This slide is used for Takehiro Azuma's presentation at KEK. Therefore, it is not the authors but *the* presenter Takehiro Azuma that is responsible for any potential flaws in this slide.

1 Introduction

The studies of the fuzzy sphere are interesting from the following points of view:

(Matrix-model side)

The fuzzy spheres play an important role as the prototype of the curved-space background.

The IIB matrix model is the most promising candidate of the constructive definition of the superstring theory.

On the other hand, this has only a classical background, which makes the perturbation around the curved space impossible.

In order to evade this difficulty, the matrix models with the Chern-Simons term have been extensively studied.

hep-th/0101102,0103192,0108002, 0204256,0207115,0209057,0301055,0303120,0307007, 0309264,0312241,0401038, 0403242,0405096

String-theory side

The fuzzy spheres appear as the classical solutions in the presence of an external RR field (Myers effect):

R.Myers, hep-th/9910053

The interests of the higher-dimensional fuzzy S^4 spheres:

• Longitudinal 5-branes in the Matrix theory:

J.Castelino, S.Lee and W.Taylor, hep-th/9712105

• Four-dimensional noncommutative theory in the large-N limit of the large-N reduced model:

Y.Kimura, hep-th/0204256,

T. Azuma, S. Bal, K.Nagao and J. Nishimura, hep-th/0405096

• Application to the quantum Hall effect.

K.Hasebe and Y. Kimura, hep-th/0310274

The purpose of this paper:

- The authors attempt to build the algebra of the fuzzy S^4 spheres, retaining the $SO(3) \otimes SO(2)$ symmetry.
- ullet They build the associative star product for the fuzzy S^4 spheres.

2 The algebra on the fuzzy S^4 sphere

To retain the SO(5) symmetry of the fuzzy S^4 sphere, one has to introduce the extra degrees of freedom.

The algebra is realized by the 6-dimensional homogeneous space SO(5)/U(2).

Namely, the fuzzy S^2 sphere is attached on every point of the S^4 sphere.

$$SO(5)/U(2) \sim (SO(5)/SO(4)) \times (SO(4)/U(2)) \ \sim \underbrace{(SO(5)/SO(4))}_{S^4 \text{ sphere}} \times \underbrace{(SO(3)/U(1))}_{S^2 \text{ sphere}}.$$

Such an algebra is constructed through the n-fold symmetric tensor product of the 5-dimensional gamma matrices:

$$G_A = \underbrace{(\Gamma_A \otimes 1 \otimes \cdots \otimes 1)_{ ext{sym}}}_{ extbf{n-fold product}} + \cdots + (1 \otimes \cdots \otimes 1 \otimes \Gamma_A)_{ ext{sym}},$$

where Γ_A satisfies the following Clifford algebra:

$$\{\Gamma_A,\Gamma_B\}=2\delta_{AB},\;(A,B,\dots=1,2,3,4,5).$$

More explicitly, they are constructed as

$$\Gamma_a = \sigma_3 \otimes \sigma_a, \ \Gamma_4 = \sigma_2 \otimes 1_{2 \times 2}, \ \Gamma_5 = \sigma_1 \otimes 1_{2 \times 2}.$$

• G_A is realized by the $N = \frac{1}{6}(n+1)(n+2)(n+3)$ dimensional matrices:

Unlike the S^2 fuzzy sphere, the S^4 fuzzy sphere is realized by a limited size of the matrices.

• G_A does not close with respect to the commutator.

 G_A and the commutator $G_{AB} = [G_A, G_B]$ satisfy the following algebras:

- (1) $G_A^2 = n(n+4)1_{N\times N}$,
- (2) $G_{AB}G_{AB} = -16n(n+4)1_{N\times N}$
- (3) $[G_{AB}, G_C] = 4(-\delta_{AC}G_B + \delta_{BC}G_A),$
- $[G_{AB},G_{CD}] = 4(\delta_{BC}G_{AD} + \delta_{AD}G_{BC} \delta_{AC}G_{BD} \delta_{BD}G_{AC}),$
- $egin{aligned} \epsilon_{ABCDE}G_BG_CG_DG_E &= 8(n+2)G_A. \ &\Rightarrow G_{AB} &= rac{1}{n+2}\epsilon_{ABCDE}G_CG_DG_E. \end{aligned}$

Here, we break the SO(5) rotational symmetry as

$$SO(5) \rightarrow SO(3) \otimes SO(2)$$
,

and try to build the N = 2(2j + 1)-dimensional representation.

Namely, we take the following tensor product:

(Pauli matrices) \otimes (spin-j rep. of SO(3)).

Then, the representation is constructed as

$$egin{aligned} \hat{X}^a &= rac{2}{3}\sigma_3 \otimes T^a_{(j)}, \ \hat{X}^4 &= rac{1}{3}\sigma_1 \otimes 1_{2j+1}, \ \hat{X}^5 &= rac{1}{3}\sigma_2 \otimes 1_{2j+1}, \ ext{where} \ a,b,c,\cdots &= 1,2,3, \ i,j,\cdots &= 4,5, \ A,B,C,\cdots &= 1,2,3,4,5, \ [T^a_{(j)},T^b_{(j)}] &= i\epsilon^{abc}T^c_{(j)}, \ (T^a_{(j)})^2 &= j(j+1). \end{aligned}$$

This representation satisfies the following relations:

$$egin{align} [\hat{X}^4,\hat{X}^5] &= rac{3}{4j(j+1)}\epsilon_{45abc}\hat{X}^a\hat{X}^b\hat{X}^c, \ [\hat{X}^A,\hat{X}^B] &= \epsilon_{ABCDE}\hat{X}^C\hat{X}^D\hat{X}^E, \ ext{(otherwise)}. \end{aligned}$$

In general, it is impossible to resurrect the SO(5) rotational symmetry via the following rescaling:

$$\hat{X}^a=rac{2lpha}{3}\sigma_3\otimes T^a_{(j)},\,\,\hat{X}^i=rac{eta}{3}\sigma_{i-3}\otimes 1_{2j+1},$$

which satisfies the following commutation relations:

$$egin{aligned} [\hat{X}^a,\hat{X}^b] &= rac{lpha}{eta^2} \epsilon^{abcij} (\hat{X}^c\hat{X}^i\hat{X}^j - \hat{X}^i\hat{X}^c\hat{X}^j + \hat{X}^i\hat{X}^j\hat{X}^c), \ [\hat{X}^a,\hat{X}^i] &= rac{1}{lpha} \epsilon^{aibcj} (\hat{X}^b\hat{X}^c\hat{X}^j - \hat{X}^b\hat{X}^j\hat{X}^c + \hat{X}^j\hat{X}^b\hat{X}^c), \ [\hat{X}^4,\hat{X}^5] &= rac{3eta^2}{4j(j+1)lpha^3} \epsilon^{45abc}\hat{X}^a\hat{X}^b\hat{X}^c. \end{aligned}$$

The SO(5) symmetry is resurrected only if $\frac{\alpha}{\beta^2}=\frac{1}{\alpha}=\frac{3\beta^2}{4j(j+1)\alpha^3}$, which is realized only for $j=\frac{1}{2}$.

The matrix theory action for this fuzzy-4 sphere is

$$egin{aligned} S &= \int dt ext{tr} \left\{ rac{1}{2R_M} (D_0 \hat{X}^A)^2 + rac{1}{4} \left([\hat{X}^a, \hat{X}^b] - rac{lpha}{eta^2} \epsilon^{abCDE} \hat{X}^C \hat{X}^D \hat{X}^E
ight)^2 \ &+ rac{1}{2} \left([\hat{X}^a, \hat{X}^i] - rac{1}{lpha} \epsilon^{aiCDE} \hat{X}^C \hat{X}^D \hat{X}^E
ight)^2 \ &+ rac{1}{2} \left([\hat{X}^4, \hat{X}^5] - rac{3eta^2}{4j(j+1)lpha^3} \epsilon^{45CDE} \hat{X}^C \hat{X}^D \hat{X}^E
ight)^2
ight\}. \end{aligned}$$

3 Associative product of the fuzzy S^2 sphere

The construction of the associative product for the fuzzy S^2 sphere plays a pivotal role in the following S^4 case.

Here, we review the work for S^2

K. Hayasaka, R. Nakayama and Y. Takaya, hep-th/0209240

We start with the star product of the arbitrary representation:

$$egin{aligned} f(x)\star_{\lambda}g(x)&=f(x)g(x)+\lambda J^{ab}(\partial_{a}f(x))(\partial_{b}g(x))\ &+\sum\limits_{n=2}^{\infty}\lambda^{n}\left(\sum\limits_{m=2}^{n}\chi_{m,m}^{(n)}J^{a_{1}b_{1}}\cdots J^{a_{m}b_{m}}(\partial_{a_{1}}\cdots\partial_{a_{m}}f(x))(\partial_{b_{1}}\cdots\partial_{b_{m}}g(x))
ight). \end{aligned}$$

Here, J^{ab} is defined as

$$J^{ab} = r^2 \delta^{ab} - x^a x^b + i r \epsilon^{abc} x^c$$

 $(r = \sqrt{(x^1)^2 + (x^2)^2 + (x^3)^2})$ and has the following properties:

- (1) $x^a J^{ab} = x^b J^{ab} = 0$,
- (2) $J^{ab}J^{ac} = J^{ba}J^{ca} = 0$,
- $(3) J^{ab}(\partial_a J^{cb}) = J^{ca}(\partial_a J^{db}),$
- $(4) \quad J^{ba}J^{dc}(\partial_a\partial_cJ^{fe}) = -J^{bf}J^{de} J^{be}J^{df},$
- $(5) \ \ J^{a_1b_1}J^{a_2b_2}\cdots J^{a_nb_n}(\partial_{b_1}\cdots\partial_{b_n}J^{cd})=0, \ \ (\text{for} \ n\geq 3).$

From (1) and (2), r is a constant for \star_{λ} product. This is a necessary condition for \star_{λ} to be a product on the S^2 sphere.

$$f(r)\star_{\lambda}g(x^a)=g(x^a)\star_{\lambda}f(r)=f(r)g(x^a).$$

We determine $\chi_{m,m}^{(n)}$, to satisfy the associativity:

$$(f(x)\star_{\lambda}g(x))\star_{\lambda}h(x)=f(x)\star_{\lambda}(g(x)\star_{\lambda}h(x)).$$

- ullet Up to the first order: for both $(f(x)\star_{\lambda}\overline{g(x)})\star_{\lambda}h(x)$ and $f(x)\star_{\lambda}(g(x)\star_{\lambda}h(x)),$ $fgh+\lambda J^{ab}\{(\partial_a f)(\partial_b g)h+(\partial_a f)g(\partial_b h)+f(\partial_a g)(\partial_b h)\}.$
- To the second order, the difference

$$(f(x)\star_{\lambda}g(x))\star_{\lambda}h(x)-f(x)\star_{\lambda}(g(x)\star_{\lambda}h(x)) ext{ is} \ \lambda^{2}[\underbrace{(J^{ab}\partial_{a}J^{cd}-J^{ca}\partial_{a}J^{db})}_{ ext{vanishes due to }(3).}(\partial_{c}f)(\partial_{d}g)(\partial_{b}h) \ + (1-2\chi_{2,2}^{(2)})J^{ac}J^{bd}(\partial_{a}\partial_{b}f\partial_{c}g\partial_{d}h-\partial_{a}f\partial_{b}g\partial_{c}\partial_{d}h)].$$

This gives the constraint $\chi_{2,2}^{(2)} = \frac{1}{2}$.

• By the same token, we derive the relation

$$\chi_{m,m}^{(n)} = rac{1}{m!} \sum\limits_{P} (m-1)^{P_1} (m-2)^{P_2} \cdots 2^{P_{m-2}} 1^{P_{m-1}}.$$

 $\{P_i\}$ is the partition of n-m into m-1 nonnegative integers.

$$\chi_{3,3}^{(n)} = rac{1}{3!} \left(2^0 1^{n-3} + 2^1 1^{n-4} + \cdots + 2^{n-4} 1^1 + 2^{n-3} 1^0
ight) = rac{2^{n-2} - 1}{6}.$$

We thus obtain the following product:

$$f(x)\star_{\lambda}g(x) \ = \ fg + \sum\limits_{m=1}^{\infty} C_m(\lambda)J^{a_1b_1}\cdots J^{a_mb_m} \ imes (\partial_{a_1}\cdots\partial_{a_m}f)(\partial_{b_1}\cdots\partial_{b_m}g), ext{ where} \ C_m(\lambda) \ = \ rac{\lambda^m}{m!(1-\lambda)(1-2\lambda)\cdots(1-(m-1)\lambda)}.$$

For the unitary representation, this should reproduce the ordinary SU(2) algebra and its Casimir:

$$[x^a,x^b]_\star=2i\lambda r\epsilon^{abc}x^c.$$

Then the rescaling $y^a = \frac{x^a}{2\lambda r}$ gives

$$[y^a,y^b]_\star=i\epsilon^{abc}y^c,\;y^a\star_\lambda y^a=rac{1+2\lambda}{(2\lambda)^2}=j(j+1).$$

Then, λ is determined as $\lambda = \frac{1}{2j}, -\frac{1}{2j+2}$.

$$oxed{\lambda = \lambda_j^{(A)} = rac{1}{2j}}$$

In this case, the coefficient $C_m(\lambda)$ is given by

$$C_m(\lambda_j^{(A)}) = egin{cases} rac{(2j-m)!}{m!(2j)!} & (ext{for } m \leq 2j), \ \infty & (ext{for } m > 2j). \end{cases}$$

This product is limited to the finite representation! We denote this product as \star .

Especially for $j = \frac{1}{2}$, this gives

$$x^a\star x^b=r^2\delta_{ab}+ir\epsilon^{abc}x^c,\ 1\star x^a=x^a\star 1=x^a.$$

This corresponds to the algebra of the Pauli matrices σ_a and the unit matrices $1_{2\times 2}$.

$$oxed{\lambda=\lambda_j^{(B)}=-rac{1}{2j+2}}$$

In this case, the coefficient is given by

$$C_m(\lambda_j^{(B)}) \ = \ rac{(-1)^m}{m!} rac{(2j+1)!}{(2j+1+m)!}, \ ext{(for any } m).$$

This has no divergence for any m. Therefore, this product is applicable to an arbitrary size of representation. We denote this product as \bullet .

Especially for $j = \frac{1}{2}$, this gives

$$egin{array}{lll} x^aullet x^b &=& rac{4}{3}(x^ax^b-rac{1}{3}r^2\delta^{ab})+rac{1}{9}r^2\delta^{ab}-rac{i}{3}r\epsilon^{abc}x^c, \ x^aullet x^bullet x^c &=& rac{20}{9}x^ax^bx^c-rac{i}{27}r^3\epsilon^{abc}+\cdots. \end{array}$$

The algebra of the Pauli matrices is not realized.

On the other hand, the integration on the sphere gives

$$\underbrace{\int d\Omega x^aullet x^b = rac{4\pi}{9}r^2\delta^{ab}}_{={
m tr}\sigma^a\sigma^b},\; \underbrace{\int d\Omega x^aullet x^bullet x^c = -rac{4\pi i}{27}r^3\epsilon^{abc}}_{={
m tr}\sigma^a\sigma^b\sigma^c}.$$

The trace corresponds to the product of the Pauli matrices.

4 Noncommutative product on $(S^4)_j$

We construct the star product on the fuzzy S^4 sphere.

Here, we focus on the finite set of the function, and focus on the product \star for $\lambda = \lambda_j^{(A)}$.

$$oxed{S^2 \otimes S^2 ext{ parameterization of } S^4}$$

 S^4 representation is expressed by the tensor product

$$(2 imes 2 ext{ matrices spanned by } 1_{2 imes 2}, \sigma_a) \ \otimes \ ((2j+1) imes (2j+1) ext{ matrices spanned by } 1_{2j+1}, T^a_{(j)}).$$

We assign the S^2 coordinate for each representation as

$$x^1, x^2, x^3: ext{ (for the } 2 imes 2 ext{ rep. of } S^2), \ y^1, y^2, y^3: ext{ (for the } (2j+1) imes (2j+1) ext{ rep. of } S^2).$$

We define the radii of the S^2 spheres as

$$r=\sqrt{(x^a)^2},\;
ho=\sqrt{(y^a)^2}.$$

The correspondence with the matrices is

$$rac{\sigma^a}{2} \Leftrightarrow rac{x^a}{2r}, \,\, T^a_{(j)} \Leftrightarrow rac{jy^a}{
ho}.$$

We then find the following correspondence (for $\alpha = \frac{3R}{2i}$, $\beta = 3R$):

$$\hat{X}^a = rac{R}{j}\sigma_3\otimes T^a_{(j)} \Leftrightarrow X^a = rac{Rx^3y^a}{r
ho}, \quad ext{(for } a=1,2,3), \ \hat{X}^i = R\sigma_{i-3}\otimes 1_{2j+1} \Leftrightarrow X^i = rac{Rx^{i-3}}{r}, \quad ext{(for } i=4,5).$$

This mapping $S^2 \otimes S^2 \to S^4$ gives a double cover of the S^4 sphere:

The following two points on $S^2 \otimes S^2$ fall onto the same point on S^4 :

$$egin{aligned} P: & \left(rac{(x^1,x^2,x^3)}{r},rac{(y^1,y^2,y^3)}{
ho}
ight) \in S^2_+ \ (x^3 \geq 0), \ P': & \left(rac{(x^1,x^2,-x^3)}{r},rac{(-y^1,-y^2,-y^3)}{
ho}
ight) \in S^2_- \ (x^3 \leq 0). \end{aligned}$$

The overlapping point of S^2 (namely, the equator $x^3 = 0$) constitutes $S^1 \otimes S^2$.

This $S^1 \otimes S^2$ is mapped on the S^1 circle C:

$$\mathcal{C} \ = \ \{(X^1,\cdots,X^5)|X^1=X^2=X^3=0, X^4+X^5=R^2\}.$$

Therefore, the inverse map $S^4 \to S^2_+ \otimes S^2$ is multi-valued (indeterminate) on the circle:

$$x^1(X) = rac{rX^4}{R}, x^2(X) = rac{rX^5}{R}, x^3(X) = rac{rD(X)}{R}, \ y^a(X) = rac{
ho X^a}{D(X)}, ext{ where} \ D(X) = \sqrt{(X^1)^2 + (X^2)^2 + (X^3)^2}.$$

The mapping $S^4 \to S^2_- \otimes S^2$ is likewise obtained by the replacement $D(X) \Rightarrow -D(X)$. It is also indeterminate on \mathcal{C} .

It is straightforward to build the noncommutative product on $(S^4)_j$, from the star product on fuzzy S^2 sphere:

To this end, we combine the noncommutative product for each S^2 :

$$egin{aligned} F(X) \star G(X) \ &= F(X)G(X) + (r^2\delta^{ab} - x^ax^b + ir\epsilon^{abc}x^c) rac{\partial F(X)}{\partial x^a} rac{\partial G(X)}{\partial x^b} \ &+ \lambda (
ho\delta^{ab} - y^ay^b + i
ho\epsilon^{abc}y^c) rac{\partial F(X)}{\partial y^a} rac{\partial G(X)}{\partial y^b} \ &+ \lambda (r^2\delta^{ab} - x^ax^b + ir\epsilon^{abc}x^c) \ & imes (
ho^2\delta^{de} - y^dy^e + i
ho\epsilon^{def}y^f) rac{\partial^2 F(X)}{\partial x^a\partial y^d} rac{\partial^2 G(X)}{\partial x^b\partial y^e} + \cdots \end{aligned}$$

In this way, we can easily build the product for the S^4 sphere, by reducing the symmetry as $SO(5) \rightarrow SO(3) \otimes SO(2)$.

Functions on the noncommutative $(S^4)_j$

The functions of the fuzzy $(S^4)_j$ are given by the product of the functions on the two fuzzy S^2 :

- First S^2 : spanned by $1, \frac{x^a}{r}$.
- Second S^2 : spanned by $1, \frac{y^a}{\rho}, \cdots, \frac{y^{a_1}y^{a_2}\cdots y^{a_2j}}{\rho^{2j}}$.

Then, the functions of the fuzzy $(S^4)_j$ are given by

$$1, rac{x^a}{r}, rac{y^{a_1}}{
ho}, rac{x^a y^{a_1}}{r
ho}, \cdots, rac{y^{a_1} \cdots y^{a_{2j}}}{
ho^{2j}}, rac{x^a y^{a_1} \cdots y^{a_{2j}}}{r
ho^{2j}}.$$

The functions on $(S^4)_j$ are expressed via X^A as

$$1, \ rac{X^i}{R}, rac{D(X)}{R}, \cdots, \ rac{=rac{x^a}{r}}{D(X)^n}, rac{X^iX^{a_1}\cdots X^{a_{2j}}}{RD(X)^n}, \ rac{X^3X^{a_1}\cdots X^{a_{2j}}}{RD(X)^n} = rac{x^{i-3}y^{a_1...y^{a_{2j}}}}{r
ho^{2j}} = rac{x^3y^{a_1...y^{a_{2j}}}}{r
ho^{2j}}$$

The number of the independent function is

$$4 \times (2j+1)^2 = N^2$$
.

Thus, the function of $(S^4)_j$ corresponds to the $2(2j+1) \times 2(2j+1)$ hermitian matrices.

The spherical harmonics of fuzzy S^4 is given by $Y_{l_1l_2l_3m}$.

The degree of freedom is (up to order l)

$$\sum_{l_1=0}^{l}\sum_{\substack{l_2=0}}^{l_1}\sum_{l_3=0}^{l_2}\sum_{m=-l_3}^{l_3}1 = rac{(l+1)(l+2)^2(l+3)}{12}.$$

This is not a square number. This makes it difficult to establish the isomorphism

$$(\text{matrices}) \Leftrightarrow (\text{polynomial on } S^4).$$

This construction avoids this problem, since they introduce a non-polynomial function.

These functions are not well-defined on the equator \mathcal{C} , since these functions are indeterminate on \mathcal{C} .

However, these singularities are not serious in the noncommutative field theory.

The derivative is given by the commutator $\nabla_A F(X) = \frac{i}{B} [X^A, F(X)]_{\star}$.

We define the star product on the equator C by the limit outside C, such that the singularities are canceled on C.

In this sense, the products and derivatives are "well-defined".

This is evident from the matrix \Leftrightarrow function correspondence, because the matrix configuration does not have any singularity.

5 Noncommutative product on $(S^4)_{j=\frac{1}{2}}$

In this section, we scrutinize the simplest case $j = \frac{1}{2}$ in more detail.

In principle, we can obtain the explicit form of the star product by replacing (x^a, y^a) with X^A .

On the other hand, it is easier to determine the product for $j = \frac{1}{2}$, such that it reproduces the multiplication rule.

For $j = \frac{1}{2}$, we have the following functions:

$$1, \ \dfrac{\dfrac{X^i}{R}=\dfrac{x^{i-3}}{r}, \ \dfrac{D(X)}{R}=\dfrac{x^3}{r}, \ \dfrac{\dfrac{X^a}{D}=\dfrac{y^a}{
ho},}{\dfrac{x^a}{R}=\dfrac{x^3y^a}{r
ho}, \ \dfrac{X^iX^a}{RD(X)}=\dfrac{x^{i-3}y^a}{r
ho}.$$

The star products of these functions can be built from the S^2 algebra (and likewise for $\frac{y^a}{\rho}$):

$$1\star 1=1,\; 1\star rac{x^a}{r}=rac{x^a}{r}\star 1=rac{x^a}{r},\; rac{x^a}{r}\star rac{x^b}{r}=\delta^{ab}+i\epsilon^{abc}rac{x^c}{r}.$$

This gives the following multiplication laws:

$$\frac{X^{a}}{R} \star \frac{X^{b}}{R} = \delta_{ab} + i\epsilon_{abc} \frac{X^{c}}{D(X)}, \qquad \frac{X^{i}}{R} \star \frac{X^{j}}{R} = \delta_{ij} + i\epsilon_{ij} \frac{D(X)}{R},$$

$$\frac{X^{a}}{R} \star \frac{X^{i}}{R} = i\epsilon_{ij} \frac{X^{j}X^{a}}{RD(X)}, \qquad \frac{X^{i}}{R} \star \frac{X^{a}}{R} = -i\epsilon_{ij} \frac{X^{j}X^{a}}{RD(X)},$$

$$\frac{X^{a}}{D(X)} \star \frac{D(X)}{R} = \frac{X^{a}}{R}, \qquad \frac{D(X)}{R} \star \frac{X^{a}}{D(X)} = \frac{X^{a}}{R},$$

$$\frac{X^{i}}{R} \star \frac{D(X)}{R} = -i\epsilon_{ij} \frac{X^{j}}{R}, \qquad \frac{D(X)}{R} \star \frac{X^{i}}{R} = i\epsilon_{ij} \frac{X^{j}}{R},$$

$$\frac{X^{i}X^{a}}{R} \star \frac{X^{j}X^{a}}{RD(X)} = \delta_{ij} \frac{X^{a}}{D(X)} + i\epsilon_{ij} \frac{X^{a}}{R},$$

$$\frac{X^{i}X^{a}}{RD(X)} \star \frac{X^{b}}{D(X)} = \delta_{ab} + i\epsilon_{abc} \frac{X^{c}}{RD(X)},$$

$$\frac{X^{a}}{RD(X)} \star \frac{X^{b}}{D(X)} = \delta_{ab} \frac{X^{i}}{R} + i\epsilon_{abc} \frac{X^{i}X^{c}}{RD(X)},$$

$$\frac{X^{a}}{RD(X)} \star \frac{X^{b}}{RD(X)} = \delta_{ab} \frac{X^{i}}{R} + i\epsilon_{abc} \frac{X^{c}}{RD(X)},$$

$$\frac{X^{a}}{R} \star \frac{X^{b}}{RD(X)} = \delta_{ab} \frac{D(X)}{R} + i\epsilon_{abc} \frac{X^{c}}{R},$$

$$\frac{X^{i}X^{a}}{RD(X)} \star \frac{X^{b}}{R} = \delta_{ab} \frac{D(X)}{R} + i\epsilon_{abc} \frac{X^{c}}{R},$$

$$\frac{X^{i}X^{a}}{RD(X)} \star \frac{X^{b}}{R} = \delta_{ab} \frac{D(X)}{R} + i\epsilon_{abc} \frac{X^{c}}{R},$$

$$\frac{X^{i}X^{a}}{RD(X)} \star \frac{X^{b}}{R} = \delta_{ab} \frac{D(X)}{R} + i\epsilon_{abc} \frac{X^{c}}{R},$$

$$\frac{X^{i}X^{a}}{RD(X)} \star \frac{X^{i}X^{a}}{R} = -i\epsilon_{ij} \frac{X^{j}X^{a}}{RD(X)},$$

$$\frac{D(X)}{R} \star \frac{X^{i}X^{a}}{RD(X)} = i\epsilon_{ij} \frac{X^{j}X^{a}}{RD(X)},$$

$$\frac{X^{a}}{R} \star \frac{X^{i}X^{b}}{RD(X)} = i\epsilon_{ij} \delta_{ab} \frac{X^{j}}{R} - \epsilon_{ij} \epsilon_{abc} \frac{X^{j}X^{c}}{RD(X)},$$

$$\frac{X^{i}X^{a}}{RD(X)} \star \frac{X^{j}X^{b}}{R} = -i\epsilon_{ij} \delta_{ab} \frac{X^{j}}{R} + \epsilon_{ij} \epsilon_{abc} \frac{X^{j}X^{c}}{RD(X)},$$

$$\frac{X^{i}X^{a}}{RD(X)} \star \frac{X^{j}X^{b}}{R} = -i\epsilon_{ij} \delta_{ab} \frac{X^{j}}{R} + \epsilon_{ij} \epsilon_{abc} \frac{X^{c}}{RD(X)},$$

$$\frac{X^{i}X^{a}}{RD(X)} \star \frac{X^{j}X^{b}}{R} = -i\epsilon_{ij} \delta_{ab} \frac{X^{j}}{R} + \epsilon_{ij} \epsilon_{abc} \frac{X^{c}}{RD(X)},$$

$$\frac{X^{i}X^{a}}{RD(X)} \star \frac{X^{j}X^{b}}{R} = -i\epsilon_{ij} \delta_{ab} \frac{X^{j}}{R} + \epsilon_{ij} \epsilon_{abc} \frac{X^{c}}{RD(X)},$$

$$\frac{X^{i}X^{a}}{RD(X)} \star \frac{X^{j}X^{b}}{R} = -i\epsilon_{ij} \delta_{ab} \frac{X^{j}}{R} + \epsilon_{ij} \epsilon_{abc} \frac{X^{c}}{RD(X)},$$

$$\frac{X^{i}X^{a}}{RD(X)} \star \frac{X^{i}X^{b}}{R} = -i\epsilon_{ij} \delta_{ab} \frac{X^{j}}{R} + \epsilon_{ij} \epsilon_{abc} \frac{X^{c}}{RD(X)},$$

$$\frac{X^{i}X^{a}}{RD(X)} \star \frac{X^{i}X^{b}}{R} = -i\epsilon_{ij} \delta_{ab} \frac{X$$

The product of $j = \frac{1}{2}$ is at most of the second order of the derivative.

Then, the star product is constrained as

$$F(X) \star G(X) = FG$$

$$+ L_{a,b}^{(1)} \frac{\partial F}{\partial X^a} \frac{\partial G}{\partial X^b} + L_{i,j}^{(2)} \frac{\partial F}{\partial X^i} \frac{\partial G}{\partial X^a}$$

$$+ L_{a,b}^{(3)} \frac{\partial F}{\partial X^a} \frac{\partial G}{\partial X^i} + L_{i,a}^{(4)} \frac{\partial F}{\partial X^a} \frac{\partial G}{\partial X^a}$$

$$+ L_{ab,c}^{(5)} \frac{\partial^2 F}{\partial X^a \partial X^b} \frac{\partial G}{\partial X^c} + L_{a,bc}^{(6)} \frac{\partial F}{\partial X^a} \frac{\partial^2 G}{\partial X^b \partial X^c}$$

$$+ L_{ab,b}^{(7)} \frac{\partial^2 F}{\partial X^a \partial X^b} \frac{\partial G}{\partial X^c} + L_{a,bc}^{(6)} \frac{\partial F}{\partial X^a} \frac{\partial^2 G}{\partial X^b \partial X^c}$$

$$+ L_{ab,b}^{(9)} \frac{\partial^2 F}{\partial X^a \partial X^b} \frac{\partial G}{\partial X^b} + L_{a,bc}^{(10)} \frac{\partial F}{\partial X^a} \frac{\partial^2 G}{\partial X^b \partial X^b}$$

$$+ L_{ai,j}^{(11)} \frac{\partial^2 F}{\partial X^a \partial X^i} \frac{\partial G}{\partial X^b} + L_{ai,b}^{(12)} \frac{\partial F}{\partial X^a} \frac{\partial^2 G}{\partial X^a \partial X^b}$$

$$+ L_{ai,j}^{(13)} \frac{\partial F}{\partial X^a \partial X^b} \frac{\partial G}{\partial X^b} + L_{ai,b}^{(14)} \frac{\partial F}{\partial X^a \partial X^b} \frac{\partial G}{\partial X^b}$$

$$+ L_{ab,c}^{(15)} \frac{\partial^2 F}{\partial X^a \partial X^b} \frac{\partial G}{\partial X^c \partial X^d} + L_{ai,bc}^{(16)} \frac{\partial F}{\partial X^b} \frac{\partial^2 G}{\partial X^b \partial X^c}$$

$$+ L_{ab,ci}^{(17)} \frac{\partial^2 F}{\partial X^a \partial X^b} \frac{\partial G}{\partial X^c \partial X^d} + L_{ai,bc}^{(16)} \frac{\partial F}{\partial X^a \partial X^b} \frac{\partial^2 G}{\partial X^b \partial X^c}$$

$$+ L_{ab,ci}^{(19)} \frac{\partial^2 F}{\partial X^a \partial X^b} \frac{\partial^2 G}{\partial X^c \partial X^d} + L_{ai,bc}^{(20)} \frac{\partial^2 F}{\partial X^a \partial X^i} \frac{\partial^2 G}{\partial X^b \partial X^c}$$

$$+ L_{ab,ij}^{(21)} \frac{\partial^2 F}{\partial X^a \partial X^b} \frac{\partial^2 G}{\partial X^b \partial X^i}$$

$$+ L_{ai,bj}^{(23)} \frac{\partial^2 F}{\partial X^a \partial X^i} \frac{\partial^2 G}{\partial X^b \partial X^i}$$

$$+ L_{ai,bj}^{(23)} \frac{\partial^2 F}{\partial X^a \partial X^i} \frac{\partial^2 G}{\partial X^b \partial X^i}$$

$$+ L_{ai,bj}^{(23)} \frac{\partial^2 F}{\partial X^a \partial X^i} \frac{\partial^2 G}{\partial X^b \partial X^i}$$

$$+ L_{ai,bj}^{(23)} \frac{\partial^2 F}{\partial X^a \partial X^i} \frac{\partial^2 G}{\partial X^b \partial X^i}$$

$$+ L_{ai,bj}^{(23)} \frac{\partial^2 F}{\partial X^a \partial X^i} \frac{\partial^2 G}{\partial X^b \partial X^i}$$

The coefficients $L_{a,b}^{(1)} \sim L_{ij,ak}^{(25)}$ are determined such that

- The product should agree with the multiplication laws of each function.
- ullet $R=\sqrt{(X^A)^2}$ should be constant; namely $f(R)\star G(X)=G(X)\star f(R)=f(R)G(X).$

One of such solutions is given by

$$\begin{array}{lll} L_{a,b}^{(1)} &=& R^2 \delta_{ab} - X^a X^b + i R^2 \epsilon_{abc} \frac{X^c}{D(X)}, \\ L_{i,j}^{(2)} &=& R^2 \delta_{ij} - X^i X^j + i R^2 \epsilon_{ij} \frac{D(X)}{R}, \\ L_{a,i}^{(3)} &=& -X^a X^i + i R^2 \epsilon_{ij} \frac{X^j X^a}{RD(X)}, \\ L_{i,a}^{(4)} &=& -X^a X^i - i R^2 \epsilon_{ij} \frac{X^j X^a}{RD(X)}, \\ L_{ab,c}^{(5)} &=& \frac{R^2 - D(X)^2}{2} (X^a \delta_{bc} + X^b \delta_{ac}) - \frac{R^2 - D(X)^2}{D(X)^2} X^a X^b X^c \\ && + i \frac{R^2 - D(X)^2}{2} (X^c \epsilon_{acd} + X^a \epsilon_{bcd}) \frac{X^d}{D(X)}, \\ L_{a,bc}^{(6)} &=& \frac{R^2 - D(X)^2}{2} (X^c \epsilon_{abd} + X^b \delta_{ac}) - \frac{R^2 - D(X)^2}{D(X)^2} X^a X^b X^c \\ && + i \frac{R^2 - D(X)^2}{2} (X^c \epsilon_{abd} + X^b \epsilon_{acd}) \frac{X^d}{D(X)}, \\ L_{a,bi}^{(8)} &=& -\frac{1}{2} X^a X^b X^i + i \frac{R}{D(X)} \epsilon_{ij} X^j X^a X^b, \\ L_{a,bi}^{(8)} &=& -D(X)^2 X^i \delta_{ab} + X^a X^b X^i - i D(X) \epsilon_{abc} X^c X^i + i R D(X) \delta_{ab} \epsilon_{ij} X^j - i \frac{R}{D(X)} \epsilon_{ij} X^j X^a X^b - R \epsilon_{ij} \epsilon_{abc} X^j X^c, \\ L_{ai,b}^{(9)} &=& -D(X)^2 X^i \delta_{ab} + X^a X^b X^i - i D(X) \epsilon_{abc} X^c X^i - i R D(X) \delta_{ab} \epsilon_{ij} X^j + i \frac{R}{D(X)} \epsilon_{ij} X^j X^a X^b + R \epsilon_{ij} \epsilon_{abc} X^j X^c, \\ L_{ai,b}^{(11)} &=& -\frac{1}{2} X^a X^b X^i - i \frac{R}{D(X)} \epsilon_{ij} X^j X^a X^b, \\ L_{ai,j}^{(12)} &=& -\frac{1}{2} X^a X^b X^i - i \frac{R}{D(X)} \epsilon_{ij} X^j X^a X^b, \\ L_{ai,j}^{(12)} &=& -\frac{1}{2} X^a (\epsilon_{ik} X^j + \epsilon_{jk} X^i) \frac{X^k}{D(X)}, \\ L_{ij,a}^{(13)} &=& \frac{D(X)^2}{2} X^a \delta_{ij} + i R^2 X^a \epsilon_{ij} \frac{D(X)}{R}, \\ L_{ij,a}^{(14)} &=& i \frac{R}{2} X^a (\epsilon_{ik} X^j + \epsilon_{jk} X^i) \frac{X^k}{D(X)}, \\ L_{ij,a}^{(15)} &=& -i \frac{RD(X)}{2} (\delta_{ik} \epsilon_{jl} + \delta_{jk} \epsilon_{il}) X^l + \frac{D(X)^2}{4} (\epsilon_{ik} \epsilon_{jl} + \epsilon_{il} \epsilon_{jk}) X^l, \\ L_{ij,b}^{(15)} &=& -i \frac{RD(X)}{2} (\delta_{ik} \epsilon_{jl} + \delta_{jk} \epsilon_{il}) X^l + \frac{D(X)^2}{4} (\epsilon_{ik} \epsilon_{jl} + \epsilon_{il} \epsilon_{jk}) X^l. \end{array}$$

$$\begin{split} L_{ab,cd}^{(17)} &= \frac{D(X)^2}{4} (R^2 - D(X)^2) (\delta_{ac}\delta_{bd} + \delta_{ad}\delta_{bc}) + \frac{R^2 - D(X)^2}{2D(X)^2} X^a X^b X^c X^d \\ &\quad + i \frac{R^2 - D(X)^2}{4} (X^a X^c \epsilon_{bde} + X^a X^d \epsilon_{bce} + X^b X^d \epsilon_{ace} + X^b X^c \epsilon_{ade}) \frac{X^e}{D(X)} \\ &\quad - \frac{R^2 - D(X)^2}{4} (\epsilon_{ace}\epsilon_{bdf} + \epsilon_{ade}\epsilon_{bcf}) X^c X^f, \\ L_{ij,kl}^{(18)} &= -\frac{D(X)^4}{4} (\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}) + \frac{D(X)^4}{4} (\epsilon_{ik}\epsilon_{jl} + \epsilon_{il}\epsilon_{jk}), \\ L_{ab,ci}^{(19)} &= -\frac{D(X)^2}{2} X^i (X^b \delta_{ac} + X^a \delta_{bc}) - i \frac{D(X)}{2} X^i (X^b \epsilon_{acd} + X^a \epsilon_{bcd}) X^d \\ &\quad + i \frac{RD(X)}{2} (X^b \delta_{ac} + X^a \delta_{bc}) \epsilon_{ij} X^j - \frac{R}{2} (X^b \epsilon_{acd} + X^a \epsilon_{bcd}) \epsilon_{ij} X^j X^d, \\ L_{ai,bc}^{(20)} &= -\frac{D(X)^2}{2} X^i (X^c \delta_{ab} + X^b \delta_{ac}) - i \frac{D(X)}{2} X^i (X^c \epsilon_{abd} + X^b \epsilon_{acd}) X^d \\ &\quad - i \frac{RD(X)}{2} (X^c \delta_{ab} + X^b \delta_{ac}) \epsilon_{ij} X^j + \frac{R}{2} (X^c \epsilon_{abd} + X^b \epsilon_{acd}) \epsilon_{ij} X^j X^d, \\ L_{ab,ij}^{(21)} &= -\frac{1}{2} \epsilon_{ik} \epsilon_{jl} X^k X^l X^a X^b, \\ L_{ij,ab}^{(22)} &= -\frac{1}{2} \epsilon_{ik} \epsilon_{jl} X^b X^l X^a X^b, \\ L_{ai,bj}^{(23)} &= R^2 D(X)^2 \delta_{ij} \delta_{ab} - D(X)^2 X^i X^j \delta_{ab} - \frac{R^2 - D(X)^2}{2} X^a X^b \delta_{ij} \\ &\quad + i R^2 D(X) \delta_{ij} \epsilon_{abc} X^c - i D(X) X^i X^j \epsilon_{abc} X^c, \\ L_{ai,jk}^{(24)} &= \frac{D(X)^2}{4} X^a (X^k \delta_{ij} + X^j \delta_{ik}), \\ L_{ai,j,ak}^{(25)} &= \frac{D(X)^2}{4} X^a (X^k \delta_{ij} + X^j \delta_{ik}). \end{split}$$

The covariant derivatives are defined (and given) as

$$\begin{split} \nabla_a G(X) &= \frac{i}{R} [X_a, G(X)]_\star \\ &= \frac{i}{R} \Big((L_{a,b}^{(1)} - L_{b,a}^{(1)}) \frac{\partial G}{\partial X^b} + (L_{a,i}^{(3)} - L_{i,a}^{(4)}) \frac{\partial G}{\partial X^i} + (L_{a,bc}^{(6)} - L_{bc,a}^{(5)}) \frac{\partial^2 G}{\partial X^b \partial X^c} \\ &\quad + (L_{a,bi}^{(8)} - L_{bi,a}^{(9)}) \frac{\partial^2 G}{\partial X^b \partial X^i} + (L_{a,ij}^{(12)} - L_{ij,a}^{(11)}) \frac{\partial^2 G}{\partial X^i \partial X^j} \Big) \\ &\equiv -2 \frac{R}{D(X)} \epsilon_{abc} X^c \frac{\partial G}{\partial X^b} - 2 \frac{1}{D(X)} \epsilon_{ij} X^j X^a \frac{\partial G}{\partial X^i} \\ &\quad - \frac{R^2 - D(X)^2}{RD(X)} (\epsilon_{acd} X^b + \epsilon_{bcd} X^a) X^d \frac{\partial^2 G}{\partial X^b \partial X^c} \\ &\quad + \frac{2}{R} D(X) \epsilon_{abc} X^c X^i \frac{\partial^2 G}{\partial X^b \partial X^i} - 2i \epsilon_{ij} \epsilon_{abc} X^j X^c \frac{\partial^2 G}{\partial X^b \partial X^i} \\ &\quad + \frac{1}{D(X)} (\epsilon_{ik} X^j + \epsilon_{jk} X^i) X^k X^a \frac{\partial^2 G}{\partial X^i \partial X^j}, \end{split}$$

$$\begin{split} \nabla_i G(X) &= \frac{i}{R} [X_i, G(X)]_\star \\ &= \frac{i}{R} \Big((L_{i,j}^{(2)} - L_{j,i}^{(2)}) \frac{\partial G}{\partial X^j} + (L_{i,a}^{(4)} - L_{a,i}^{(3)}) \frac{\partial G}{\partial X^a} + (L_{i,ab}^{(10)} - L_{ab,i}^{(7)}) \frac{\partial^2 G}{\partial X^a \partial X^b} \\ &\quad + (L_{i,aj}^{(13)} - L_{aj,i}^{(11)}) \frac{\partial^2 G}{\partial X^a \partial X^j} + (L_{i,jk}^{(16)} - L_{jk,i}^{(15)}) \frac{\partial^2 G}{\partial X^j \partial X^k} \Big) \\ &\equiv -2D(X) \epsilon_{ij} \frac{\partial G}{\partial X^j} - 2 \frac{1}{D(X)} \epsilon_{ij} X^j X^a \frac{\partial G}{\partial X^a} \\ &\quad -2 \frac{1}{D(X)} \epsilon_{ij} X^j X^a X^b \frac{\partial^2 G}{\partial X^a \partial X^b} - 2D(X) X^a \epsilon_{ij} \frac{\partial^2 G}{\partial X^a \partial X^j} \\ &\quad -i \frac{D(X)^2}{2R} (\epsilon_{ij} \epsilon_{kl} + \epsilon_{ik} \epsilon_{jl}) X^l \frac{\partial^2 G}{\partial X^j \partial X^k}. \end{split}$$

The field strength of the gauge field $A_A(X)$ is (for $j=\frac{1}{2}$, $\alpha=\beta=3R$):

$$egin{aligned} F_{AB}(X) &= rac{i}{R^2} \Big([\mathcal{X}^A, \mathcal{X}^B]_\star - rac{1}{3R} \epsilon_{ABCDE} \mathcal{X}_C \star \mathcal{X}_D \star \mathcal{X}_E \Big) \,, \end{aligned} \ ext{where } \mathcal{X}^A &= X^A + RA^A.$$

6 B-field background

In this section, we build the star product on the S^4 sphere, in relation to the B-fields.

We introduce the following $S^2 \times S^2$ parameterization of the S^4 sphere:

$$egin{aligned} X^1 &= R\cos heta_1\sin heta_2\cosarphi_2, \ X^2 &= R\cos heta_1\sin heta_2\sinarphi_2, \ X^3 &= R\cos heta_1\cos heta_2, \ X^4 &= R\sin heta_1\cosarphi_1, \ X^5 &= R\sin heta_1\sinarphi_1. \end{aligned}$$

This gives a double cover of the S^4 sphere. In S^4 , the following two points are identified:

$$egin{array}{ll} P &=& (heta_1, arphi_1, heta_2, arphi_2), \ P' &=& (\pi - heta_1, arphi_1, \pi - heta_2, arphi_2 + \pi). \end{array}$$

The *B*-field background which has the maximal symmetry of the two spheres $S^2 \times S^2$ is

$$B=rac{n_1}{2}\sin heta_1d heta_1darphi_1+rac{n_2}{2}\sin heta_2d heta_2darphi_2.$$

This is rewritten in terms of X^A as

$$egin{aligned} B &= rac{n_2}{4D(X)^3} \epsilon_{abc} X^a dX^b \wedge dX^c + rac{n_1}{4RD(X)} \epsilon_{ij} dX^i \wedge dX^j \ &= rac{1}{2} B_{AB} dX^A \wedge dX^B. \end{aligned}$$

 B_{AB} has the tangential condition $B_{AB}X^A=0$.

$$egin{aligned} B_{ab} &= rac{n_2}{2D(X)^3} \epsilon_{abc} X^C, \; B_{ij} = rac{n_1}{2RD(X)} \epsilon_{ij}, \ B_{ai} &= -B_{ia} = rac{n_1}{2RD(X)^3} \epsilon_{ij} X^j X^a. \end{aligned}$$

They are singular at the equator \mathcal{C} , in which D(X) = 0.

The inverse matrix α^{AB} , such that $\alpha^{AB}B_{BC} = \delta_{AC} - X^AX^C/R^2$, is

$$egin{align} lpha^{ab} &= -rac{2D(X)}{n_2} \epsilon_{abc} X^c, \; lpha^{ij} &= -rac{2D(X)^3}{n_1 R} \epsilon_{ij}, \ lpha^{ai} &= -lpha^{ia} &= -rac{2D(X)}{n_1 R} \epsilon_{ij} X^j X^a. \end{align}$$

This defines the Poisson bracket:

$$\{F(X),G(X)\}_{PB}=rac{1}{2}lpha^{AB}\partial_{A}F(X)\partial_{B}G(X).$$

Via α^{AB} , we define the noncommutative product as

$$F(X) \star' G(X) = F(X)G(X) + i \alpha^{AB} \partial_A F(X) \partial_B G(X) \ - rac{1}{2} lpha^{AB} lpha^{CD} \partial_A \partial_C F(X) \partial_B \partial_D G(X) \ - rac{1}{3} lpha^{AB} \left(\partial_B lpha^{CD}
ight) \left\{ \partial_A \partial_C F(X) \partial_D G(X) - \partial_C F(X) \partial_A \partial_D G(X)
ight\} + \cdots.$$

7 Conclusion

In this paper, the authors built the noncommutative product for the fuzzy S^4 sphere.

To this end, they broke the symmetry SO(5) to $SO(3) \times SO(2)$.

This has enabled us to apply the algebra of the fuzzy S^2 sphere.