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1 Introduction

The promising candidate of the constructive definition of
superstring theory:

IIB matrix model

N.Ishibashi, H.Kawai, Y.Kitazawa and A.Tsuchiya, hep-th/9612115.

IIB matrix model has the following illuminating fea-
tures:
e We can describe the multi-body system of D-branes.
IIB matrix model is not the D-instant action but the
second quantization of superstring theory.

e Evidence of the gravitational interaction:

* When we regard the eigenvalues as the spacetime
coordinates, this model incorporates N' = 2 SUSY.
(hep-th/9612115)

* Graviton-dilaton exchange: (hep-th/9612115)

*x Diffeomorphism invariance: (hep-th/9903217)

e Derivation of 4-dimensional spacetime:
(hep-th/9802085,0204240,0211272)

How did the idea of ”large-N reduced models” come

about?

In order to see this, we explore the development of the
old matrix model in the early 1990’s.

2



2 Quantization of bosonic string for D < 1

J. Distler and H.Kawai, Nucl.Phys.B321:509,1989 .

Distler and Kawai succeeded in the quantization of bosonic-
and-super string theory for D < 1.

Z—/ dgd X
Vdifxweyl

e Sv = & v d*6,/gg™ 0, X 0, X, + = v d*€\/GR.
gap = (metric of the worldsheet).

L Sbc — % Wi d2Z(bzz82CZ + bgz@zcz).
Both S, and Sy, are, per se, Weyl invariant.

e M — /dqubdbdce_(SM+Sbc).

e We integrate out the worldsheet metric g., = €®gap.
¢ = (parameter of Weyl transformation).

e In this section we set the Regge slope as o’ = 2.

Liouville mode for noncritical string'

We have the Liouville mode in the Weyl transformation
for the noncritical string D # 26.

[dX], = [dX]; exp (;sL(qb, g)) ,

26
[dbdc], = [dbdc]; exp (——48 Sr(o, g)) , where
T

Sp = [ @63 (L9000 + Ro + u(e? — 1))

p = (arbitrary integration constant).
For D +# 26, we must integrate over the Liouville mode.
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However, it is a conundrum to perform the path integral
of the Liouville mode.

| 60 |12= [ d*€/g(6¢)* = [ d?¢\/ge®(5¢)>.

e The measure represents the distance in the functional
space.

® The measure depends on ¢ itself!!

In order to evade this problem, we set an ansatz for the
Jacobian of the Weyl transformation.

a N
[dX d¢dbdc], = [dX dpdbdc];J, where

1 .
T =exp (— [ €/3(0"0u600) — QR + 4p11e°?) )
1 _ 7 R
— exp (—277 [ d2z(8¢pDep — fQRqs + u1@6“¢)) .
N J

e The coefficient () must be determined by the Weyl
invariance of the partition function.

The energy-momentum tensor of the Liouville mode:

1
Ti(2) = —, : 0606(2) : — L0 (=),
1+ 3Q?

Tr(z)Tr(w) = 2(z —w)?t (2 —w)?

T(w) + %GT(w).

The Weyl invariance implies

25— D

crt+en+en,=14+3Q°+D—-26=0, & Q = ;



e a must be determined by the Weyl invariance of g,, =
eaq{)gab:

1
(conformal weight of e*?) = —Ea(Q +a) =1.
Then, we have two choices:

W(W‘ +vi-D).

Since a_ does not coincide with the classical limit
D — —oo, we obtain

dL = —

(v/25 — D — /1 — D).

a=a+

\/_

This quantization is well-defined only for D < 1.
e 1 < D < 25: We have a tachyon vertex!

ap __ 7’¢
e”?’ = ex 25 — ——D -1
P zf D 23

tachyon vertex!

Liouville mode is thus unstable.

e D > 25: Q, o are pure-imaginary.

In order to evade the unstable tachyon vertex, we
should take ¢ — —1¢.

However, ¢ is regarded as the ghost field.



Evaluation of critical exponent'

We derive the string susceptibility for all genera.

Z(A) = KA ?, where
A= / d*¢,/g = (area of world sheet),
~ = (string susceptibility).

Z = [[dX dpdbdc]ze TS5 ([ d*¢\[ge? — A).
The partition function is invariant under ¢ — ¢ + ~:

_(@—-h)Qp

Q 2 ~ P _
J—)J—g/ds\@Ra_J .
0 (/ dzﬁ\/gead’ — A) — e P (/ dzﬁ\/gead’ — e_pA> .

Then, we obtain

W= 1)) g(eray o0 7= A0
(84

Z(A) = exp (p (

7:2—|—Th<D—25—\/(25—D)(1—D)>.

This result coincides with the matrix-model analysis for
all genera.

The coincidence of the string susceptibility gives an im-
portant touchstone for the legitimacy of the matrix model
as a nonperturbative formulation of string theory.



Extension to ’super’string theory'

The analysis of Distler and Kawai is extended to the
‘super’string theory.

Again, the quantization is well-defined only for D < 1.

< N
_[9-D
Q = 12 ;
a = —Tﬁ(\/Q—D—\/l—D),
N = 2—|—1_h<D—9—\/(9—D)(1—D)>.

- ! Y,




3 Random triangulation

Random triangulation is suggested as a constructive def-
inition of the quantum gravity.

F. David, Nucl.Phys.B257:543,1985 .

The path integral of the string:

Z = h§0 | dg exp(—BA + vx).

e A =_ /d*,/g = (area of world sheet)
® Sy = -/ d*¢,/gg°P 0, X" 0, X, is equivalent to A for
D = 0.
o x = .- /d*,/gR =2(1— h).
It is difficult to evaluate this path integral exactly. We
resort to the discritization of the world sheet into many
equilateral triangles.

> [d% = >
h=0

random triangulation




The triangulation is described by 0-dimensional ¢® the-
ory.

1
S = TrM* - I e B,

VN

@ M = (N X N hermitian matrix)

e Feynman rule:
J szMM,,;ijle_%Ter

J AN M e—3TrM?

i ! g
=00 NEZ
& /\

(Proof) We note that, due to the hermiticity of M, the trace is written as

1 , 1 X 1T
ETTM =5 > MMy = Y MM+ 3 > M M;;.

i,j=1 1<i<j<N i=1

(M;; M) = = 010 .

Especially, we separate M;; into the real /imaginary part as
M. — M(: M*).
(3 \/5 Jjt

Then, the quadratic term is

1 , 1X

1
2 2

' > > (X5+Y5).

=1 1<i<j<N

The derivation of the propagator reduces to the simple Gaussian integral:

1 [T dza? exp(—“T”’z)

a fj’::d:cexp(—aTﬁ) )

* (M;; My) survives only for ¢ = L.
* For (M;; M) (¢ # j), we note that
¥ (Mg My;) = 5((Xii X5 — YiYs5 +21 X;Y35)) = 151 = 0.
N g, T8 J

~cancelled )
(*) does not contribute ab initio, since this is a linear term of each X;; and Y;;.

* (M;;My;) = (X35 X35 + Yi;Yy5)) = 1 survives,
(namely, : = 1,7 = k).




Then, the path integral is rewritten as

1
_ _—F n [ gN? - 2 3\n
Z=ce non'(\/_) /d Mexp( 2TrM)(TrM).

n = (ff of triangle) = (area) = A

On the other hand, the power of IV is O(INX).

(Proof) When we rescale the matrix as M — M+/ N,
! 2 3
S=N <§T1°M —gTrM > .

e Vertex: One vertex is clearly O(INV).

e Propagator: Now, the propagator is (M, ; M;,;) = + Zléjk
= This has the power O(N~1).

e Loop: The contraction of the indices is &7, , _; dudjr, = NZ.

Together with the power of the propagator, one loop brings O(N2N 1) =
O(N).

For the diagram with V' vertices, E edges and F triangles, the poweris O(NV—F+F) =

O(NX). (QE.D.)
We see the following correspondence:

g e P, Noe.

Extension to the square:
We consider 0-dimensional ¢* theory.

1
S=_-TrM?— iT'rM‘l.
2 N
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4 Exact solution via orthogonal polynomial method

E. Brezin and V.A. Kazakov, Phys.Lett.B236:144-150,1990

Especially, we concentrate on the pure gravity:
e Pure gravity (¢ = 0):

This is a system without matter field (since ¢ = 0).

1 2 1 4
g

We consider the following path integral:

4 )

Z = [dN M exp(—V(M))

N
— /dUzJ H d)\z H ()\z — )\j)ze—V(A)
' =1 1<i<g<N

N
= [dU;; 11 dXi(det X)%e V™
' 1=1

N
= [dU; 11 dXi(det X')%e™ V.
=1

\ /

1 1 .. 1 Po(A1)  Po(Az)  --- Po(An)

VRS VR AN PiA)  Pi(Aa) - P, (An)

x=| A A AN, xt=| P(\) Py(Az) - P> (An)
AN=L AN AN Pn_1(A1) Pn-—1(A2) --- Prn_1(AN)

Here, the orthogonal polynomials P,(x) of n-th degree
are defined such that

e The coefficient of the highest power is 1; namely
Po(xz) =1, Py(x) = 2" + Z?:_01 Q.

o [T dze V@ P, (z) P, () = hypbmn
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(Proof of the measure): We verify the formula for the measure
) N
dN"M =dU; [ dx; I (N — )%
i=—1 1<i<j<N
First, the matrix M is diagonalized by the unitary matrix U as
UMUT = D = diag(Aq, Azy - =y AN)-
We separate the measure into the radius part and the angular part. !

9 N
d¥" M = I[ dh\ih(A1,--+,AN)  dU;;
=1

~ ~ - angular part
radius part

Our job reduces to determining the function h:
The infinitesimal form of the unitary matrix is given by

0U;; = Ij + i(Eijei; + Ejiel).
For this 6U;;, M is obtained as
M = (8U)'D(U) = D — i[D, (Eije;; + Ejiel;)]
= D —i(—e;E;; + GszEji)(Ai — Aj).
When, %, j sweeps over 1,+++, N, we find that

h(A-An) = I1 {ii=x) = I (=X~
1<i,j <N 1<i<j<N

'The analogy for the simpler case: For the spherical coordinate
(z,y,2z) = (rsin @ cos ¢, r sin O sin ¢, r cos 0),

the measure is written as

dxdydz = r2dr sin 0d0d¢
.R/_/ — —
radius part angular part
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Then, the partition function is given by
hy
hi—1

N-1 N—-1
Z=N!]I h; =N} II f'*, where f; =
; =1

1=0

Our job is to derive the recursive formulae for f,. Next,
we note that

)‘Pn()‘) — Pn—|—1(>‘) + fnPn—l(A)°

(Proof) We make an expansion

n+1
}\Pn()\) = Z Cn,iPi(A)a
1=0

)1 (fort =n+1)
Cn,i hi—l fj‘gg d)\e—V(A)Pn()\)PZ-()\) (fore =1,2,.+-,n)

e c,;=0fori=0,1,---n—2. Thisis trivial since AP;(\) can be expressed
by the linear combination of Py(A), Py(A), -+, P,_1().
¢ Con1 = h, 1 112 dAeT VI P (A) (Pu(N) 4 2720 ea-1,iPj(N) = fa.

e ¢, = 0 because the potential V() is an even function, whereas A(P,,(\))?
is an odd function.

This completes the proof of this relation. (Q.E.D.)
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We next derive the following recursive formula:

2
agn — fn + an(fn—l + fn + fn—|—1)°

(Proof)We evaluate the following integral in two ways:

dP,, ()
d\

T=[""dxeVVAP,()

e Using )\%)(‘)‘) = AMA" + 207 an i iA ) = nA" + - -, we readily
obtain Z = nh,,.

e The other way is to perform a partial integration. Here, we exploit an explicit
form V() = %()\2 + ~A*). Then, the integral in question is

fnnl—fn/ e VD)

Exploiting the fact that dV()‘) = 3 —|— , this integral is finally evaluated as

dPn(A)

%(}\)Pn()\)Pn_l()\).

T=[""dre VW

T = éhnfn + ifn [ AAPL(VN(Pa(X) + fac1Paca (V) = -+

]_

This completes the above relation. (Q.E.D.)

In order to solve this, we translate this recursive for-
mula into the differential equation for a continuous func-

tion:

T p@, T = fe 2, wheree= =T
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Planar limit I

We take a limit N — oo and discard the effect of e.

9 = W(F(€)) = gc+ W (FI(F(E) — F)*

o W(f(£)) = f(&) +6£(£)*
e The saddle point: dW(f) =0 at f(&§) = f., and g. = W (f.).

Then, the string susceptibility is given by

(&) — fo~ (gc— g8 }
(Proof) First, the path integral is evaluated as
1 1
“Neh T ﬁlongv N Z (1——>logfk ~ [ de(1 - €)log £(£)

~ [ dE(1 — &) log(fe + (gc — 9€) ) ~ | dE(L — €)(ge — g€)
g
)".

~ (ge — g)—7+2 ~ io: n7—3(_
n=0 gc
From the correspondence between the random triangulation, the number of square
n is identified with the area A. Therefore, 7y is a string susceptibility!. (Q.E.D.)
Therefore, we read off the string susceptibility for the

planar case

1

1
9 — . = W' (F)(F () = f)? & 7 = —.

This agrees with the analysis of Distler and Kawai for
D =0,h =0:
1—-0 —30 1

v = (0—25—¢(25—0)(1—0)>+2:?+2=—5-
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Nonplanar limit I

Next, we include the € = % effect.

9§ = gc+ %W"("“c)("‘(ﬁ) — 7o)’ +2r()(r(§ +€) + (5 —€) — 2r(¢))

d?r

1 n
= g.+ EW (re)(r (&) — re)? + 2€2d—§2.
We take the double-scaling limit N — oo, g — ge..
Namely, the following quantity remains finite:

k= (g — gc)%N = (const.),

4
52

_ 1 S .
where g — g. = K™ 5a°%, € = ;- = a2 with a — 0.

We introduce the variable z as —g. + g¢é = a’z.
We set an ansatz r(§) = r. + au(z).
This gives the Painleve equation:

d’u
2
z=u"(z)+ 12
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Derivation of String susceptibility

We start with the asymptotic solution for z — oo
u(z) = vz for z — oo.

This corresponds to the planar effect, in that

N[ OT

—g+9c€=a2z:(const.)<:>a—>0<:>N:a_ — 00.

Starting from this asymptotic solution, we read off the
sub-leading effect:

u(z) = vz + az’.

This coefficient turns out to be (a,b) = (—%, —2).
We read off the string susceptibility as

1 1 1/1 —2
u(z) :g(f(ﬁ)—fc) Nig(gc—gﬁ)—g<§(gc—9§)> + .-
The string susceptibility for genus h = 1 is v = 2.

Likewise, the solution of the Painleve equation is ob-
tained as

u(z) = V= (1 -+ § uhz_%) .
h=1

Therefore, the string susceptibility for all genera is

—1 + 5h

"=

This again agrees with the analysis of Distler and Kawai
for D = 0:
1—h —1 4 5h
=24+ —(0—-25—/(25—-0)(1 —0)) = ——.
=2+ (25 —0)(1—0)) = —
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5 Conclusion

In this talk, we have reviewed the successful aspects of
the one-matrix model as a constructive definition of the
bosonic string.

e Distler and Kawai succeeded in the quantization of the
string for D < 1, and derived the string susceptibility
for all genera.

e David elucidated the correspondence between the one-
matrix model and the bosonic string theory by the
triangulation of the world sheet.

e Brezin and Kazakov solved the non-planar effect of the
string theory by the orthogonal polynomial method.

This method per se is not useful for the constructive
definition of ’super’string theory.

e The direct extension to the ’super’string faced with
the similar setback as the treatment of the fermion in
lattice gauge theory.

e The ’state-of-the-art’ matrix models (such as IKKT)
do not inherit the same techniques as the old matrix
model.

Nevertheless, this story of the old matrix model legiti-
mates the belief that

The constructive definition of the superstring theory is
realized by the matrix model!!
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