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1 Introduction

Large-N reduced models are the most powerful candi-
dates for the constructive definition of superstring theory.

N.Ishibashi, H. Kawai, Y.Kitazawa and A.Tsuchiya, hep-th/9612115.

e Dimensional reduction of N/ = 1 10-dimensional SYM
theory to 0 dimension.
A, and ¢ are N X N Hermitian matrices.

* A,: 10-dimensional vectors

* 10: 10-dimensional Majorana-Weyl (i.e. 16-component)
spinors

e Matrix regularization of the Schild form of the Green-
Schwarz action of the type IIB superstring theory.

e SU(N) gauge symmetry and SO(9,1) Lorentz sym-
metry (SO(9,1) x SU(N)).

e The N X N matrices describe the many-body system.

e No free parameter:



e N =2 SUSY:
This theory must contain spin-2 gravitons if it contains
massless particles.

This gives a shift of the bosonic variables for

§U = 61 4 60, 5@ — (50 — 6®); (a,8 = 1,2)

[géa), Séﬁ)],w — 0,
[6(,6{7A, = —2i6°PeT ,¢.

This leads us to interpret the eigenvalues of A, as the
spacetime coordinate.



2 Matrix model based on the osp(1|32, R) super Lie al-
gebra

: first mentioned with the relation to the 11-
dimensional supergravity.

E. Cremmer, B. Julia, J. Scherk, Phys.Lett.B76:409-412,1978.

= This has attracted a new attention as the unified super
Lie algebra for the M-theory.

E. Bergshoeff, A. Van Proeyen, hep-th/0003261

The matrix model based on osp(1]|32, R) is a natural
extension to I1IB matrix model.

L. Smolin, hep-th/0002009,0006137
T. Azuma, S. Iso, H. Kawai and Y. Ohwashi, hep-th/0102168

M. Bagnoud, L, Carlevaro and A. Bilal, hep-th/0201183

e Both the bosonic and the fermionic fields are embed-
ded in one multiplet.

e Extra fields:
The rank-1(3) fields may be identified with the bosonic
vector (spin connection).

Local Lorentz invariant matrix model

e Relation of the supersymmetry



Definition of osp(1|32, R) super Lie algebra

2.1 Cubic nongauged model

We start from the cubic action of the supermatrix model.

e Each component of the 33 X 33 supermatrices is pro-
moted to a large N hermitian matrix.

e OSp(1|32, R) and U(NN) symmetries are separated.



Supersymmetry'

The SUSY transformation of the osp(1|32, R) is

° :
The SUSY transformation by the supercharge

_ [0 x
Q_(z';z 0)'

Wpf — _ (ix¥ — ¥x) —mx
5X M = [Q, M] ( izm 0 .
° :
The translation of the fermionic field 522)1# — €.

In order to see the correspondence of the fields with the
IIB matrix model, we express the bosonic 32 X 32 matrices

in terms of the 10-dimensional indices (# = 0,-:-9, §f =
10).

m = WI¥ 4 = [A(+)F“(1 + rﬁ) +ADrH(1 - 1] + CMMI‘“IW +

+I e TR pa L [l(t—lH 5I"“1""“5(1—|—I‘ﬁ)+I£:.?.M5F“1"'”5(1—Fn)].

(Identification of the fields)




7
(63, 621AL) = g R uXR; (05,5 0514,7 = o,

60, 62140 = o, 600, 62140 = %,ELF“XL,
6, 6P] A =[50, 5P]AH) = 0.

Y is trivial.

* [0, 60ALH = txp[m,T)er
In the (r.h.s.), the fields sur-

vive.
— these fields are integrated out.

[0 SIALD = —{e AT e -
The fields Al(jc) itself remains in the commutator!

The osp(1|32, R) cubic matrix model possesses a two-fold
structure of the SUSY of the IIB matrix model.

ITB matrix model | bosons A,, | fermions 1 | SUSY parameters

SUSY 1 AE;H ’(,DR XRs €ER

SUSY II A UL XL €L




2.2 Gauged matrix model for the local Lorentz invariance

Smolin’s proposal for the ”gauged” model turns out to be
essential for the local Lorentz invariant matrix model.

The symmetry of IIB matrix model:

S0O(9,1) and U(NN) symmetry is decoupled.
The symmetry is a tensor product of the
group. For and .

exp((®1+1Qu) =e* ® e“.
The spacetime coordinate is embedded in the eigenval-
ues of the large N matrices.

= If we are to formulate a matrix model with local
Lorentz invariance, the and
the must be unified.

(*) A, B = [The Lie algebras whose bases are {a;}
and {b;}, respectively.]
e A ® B: The space spanned by the basis a; ® b;. This
is not necessarily a closed Lie algebra.

e ARB : The smallest Lie algebra that includes A ® B
as a subset.

The gauge group must close with respect to the com-
mutator

a® A,b® B] = _ ([a,b] ® {4, B} + {a,b} ® [4, B]).



We identify infinitely large N matrices with differential
operator.

The information of spacetime can be embedded to ma-
trices in various ways.

e Twisted Eguchi-Kawai(TEK) model:

A. Gonzalez-Arroyo and M. Okawa, Phys. Rev. D 27, 2397 (1983).

The matrices A, represent the covariant derivative
on the spacetime.

e The IIB matrix model:

A; itself represent the space-time coordinate.

The IIB matrix model with noncommutative background

interpolates these two pictures.
H. Aoki, N. Ishibashi, S. Iso, H. Kawai, Y. Kitazawa and T. Tada, hep-th/9908141

—Trny«npTH[A,, 1] reduces to the fermionic action
in the flat space in
the low-energy limit.



The local Lorentz invariant action of the fermion in the
curved space:

Sr

[ dize(@)b(@)ir e, () (db(@) + [Ai(@), 9(@)] + {TPwiry(@)b(a))
U (absorb the determinant e(z) into the definition
of ¥(x) as U(x) = ez (x)h(x) )

= [ dad(@)ir" (e, (2) (0% (@) + [Ai(@), B(@)]) + %eﬂw)wz-"u(w)w)
t+eyi(z)ed (z) (Bie 3 (x)) ¥ () )
L @R () ()9 (2).

U (use \Tl(a:)I‘“\If(a:) = 0)
— / diz ¥ (x)il* (e, (x)(8; ¥ (x) + [Ai(z), T(x)]))

. :
U (@) e, (2) Wiy (2) T ().

The corresponding promotion to a matrix model is

When v is a Majorana fermion, the following equality
holds:

10



It is extremely difficult to retain the hermiticity in the
fermion ).

Originally, the local Lorentz transformation should be
promoted as

However, it is difficult to build an action invariant under
this transformation.
The transformation of the action S}i entails the term

i
087 = — TrjT* A" ey, + - -

This leads us to abstain the hermiticity of 1 and take
the local Lorentz transformation to be

instead of §y) = [ T¥1#2{e, ., 1}.

1 |
0SE = —ZTr'c,b[I‘“A,u + aTHIE2E3 A | sy TV 12€0 0, |0
However, this action does not close with respect to the

local Lorentz transformation:

[I‘“Luz'uaAﬂlllzlla’ leuzel/ﬂ/z]

1 1
— 5 IFH1M2M3, FV1V21{Aﬂ1ﬂ2M3’ 51/11/2} _|_ 5 :[I*Hlﬂzﬂa, Fyluz}J[AN1M2ﬂ3’ 5u1u2]°

e v

We need the terms in order to formulate
a local Lorentz invariant matrix model.

11



We investigate the gauged matrix model in this point of view.

u(1|16,16) super Lie algebra'

r’ o
e M € u(1|16,16) = , where G = .

0 =

° M=<771 ¢>, where m'T? 4+ I'’m = 0.
1) v

1 1
A A A A1A,A
o m = ul 4+ uy,I' 1—|——'u,A1A2F 192 L uA1A2A3F 152458

1
—|—E’U,A1...A4I‘AIWA4 -+ QUAI...AsI‘Al'"AE’.
o => real number
=> pure imaginary

u(1|16,16) is the direct sum of the two different representations of
osp(1|32, R).

& , where

1 1
H={M= o W |my, = uAlr '+ _uAlAerlAz + A A5FA1 s,
Z’Qbh 0 5

uAl’ uAlAz’ uA1"‘A5, Qph e R}’

mg 1 1 1
A, — {M = ( /!Ea ;f}a ) |ma =u-++ 3_uA1A2A3FA1A2A3 + uAl A4FA1 A4
a

Uy UA, AyAsy UA, . Ay PW0q, 1V € (pure 1mag1nary)}.

gl(1|32, R) super Lie algebra'

o MEgl(1|32,R)=>M:(;':g 1’5)

1 1
o m=ul+us T4+ _|uA1A2FA1A2 + QUA1A2A3FA1A2A3

1
ApA AyeA
—|— U A, T 4+5_UA1 M R s

° are all real numbers.
gl(1|32, R) is the of u(1]16, 16), in that
& , where A’ = iA.

12



action of the cubic model'

e Each component of the 33 X 33 supermatrices is pro-
moted to a large N real matrix.

e No free parameter: M — g%M .

e gl(1|32, R) ® gl(N) gauge symmetry.

e The bosonic 32 X 32 matrices are separated into
in terms of 10-dimensional indices.

1 1
m. = Z+ WI*+ o1 (Crpa T2 + D,,, ., TH#2t) 4 21 (G T H,,.., [Hsad)
1
m, = E(Aff)l"“(l +T%) + ADT#(1 — T))
1
+ m(E;(:;)tzusFm”wa(l + I‘ﬂ) + El(;l)mnsl'\muwa(l _ Fﬂ))

1
+ 5(IH—) 1*#1--#5(1 + Fti) + 1) I‘Ml---us(l _ I‘ﬁ)).

B1eeeps 1o ps
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Wigner Inonu contraction'

We consider the hyperboloid in the AdS space whose radius R is

sufficiently large. The hyperboloid is

at the ”"north pole”.

AdS space:

To this end, we alter the action as
1
I= 5Tr(Ster) — R*Tr(StrM;).

The EOM possesses a classical solution

(classical solution (M))  + (fluctuation M)

RIT* ® 1nuN 0 n
0 R®1N><N

The action is expressed in terms of the fluctuation as

M,

R(tr(m?T") — v® — 2igribr)

The fluctuation is rescaled as

e m; = RI" 4+ m = R + R2m/ 4+ Rim/,

ev,=R+v=R+ R,

o ¢ =+ Yr = R 29, + Rizb;z,

© = ¢+ ¢r=Rid} + R}

_ We obtain the vanishing effective action by integrating out m;, 97,
¢ and v’ .

14



2.3 Realization of the curved-space background in the supermatrix
model

The curved-space background is a fundamental feature of

the general relativity.

It is an important question how we realize the physics
of the curved-space background via the matrix model.

Classical equation of motion of IIB matrix model:
[AY,[A,, A]] = 0.

This has only as a
classical solution.

= In order to surmount this difficulty, we alter a model
so that it incorporates a curved-space classical solution
ab initio.

To this end, there are several generalizations of the 1IB

matrix model to accommodate the curved-space classical
solution.

15



defined in the 3-dimensional Euclidean space

(IJ', UypPyr-- = 132’3)°
Its classical equation of motion

[Aps [Aps Ay]] + i€y py[Ap, Ax] =0
accommodates the S? fuzzy sphere solution
A, = ad,, where [J,,J,] = t€,,Jp.

J, is an N X N irreducible representation of the SU(2)

Lie algebra.
The radius of the fuzzy sphere is given by the Casimir:

N? -1
Q=A’+ A5+ Al = R*1nyxn, where B> = o*———.

This equation of motion also accommodates the fuzzy
sphere

A, = AJ,.

16



It is interesting to consider a similar problem in the su-
permatrix model.

action of the massive supermatrix model'

We add a mass term to the pure (nongauged) cubic ac-
tion:

17



In order to see the correspondence of the fields with II1B
matrix model, we express the bosonic 32 X 32 matrices in
terms of the 10-dimensional indices.
(svye--=0,1,---,9, § = 10).

Then, the action is decomposed as

e The rank-1 and rank-5 fields has a
classical solution:

W=A,=H, ., = Zy... =0.

e For the rank-2 tachyonic fields , the trivial
solution is unstable.
— They may incorporate an interesting stable non-
commutative solution!

18



From now on, we set the fermions and the positive-mass

bosonic fields to zero:

The equations of motion:
B, = —ip~'[B%,C,,],

Cup, = _iﬂ_l([Buv By,] + [Cui”?s Crspl)-

We integrate out the
by solving the latter equation of motions:

Then, the action reduces to

19



Fuzzy-sphere classical solution'

1.
This describes a space formed by the Cartesian prod-
uct of three fuzzy spheres.
. 2 2 2 2 2]\72 —1 ..
[Bi7Bj] = 1T €;jk B, Bi + B; + B; = p“r , (4,3, =1,2,3)
. 2 2 2 2 2N2 —1 TEVEEN =
[Bi’aBj'] :zﬂrei'j’k’Bk'a B4+B5+B6 =pr 4 ’ (l,j  k :4’076)
. 2 2 2 22N2_1 7Y T
[B,L‘u7 Bju] = Z[L'I“EinjukuBku, B7 + B8 + B9 = ur T, ('L s ] k" = 7, 8, 9)
By =0, [B,,B,] =0, (otherwise).
(We consider the Cartesian product of three spheres instead of a single S2
fuzzy sphere
[Bi, Bj] = ’i[,l,’l"e,;jkBk (fOI‘ ’I:, j, k = 1, 2, 3), B“ =0 (fOI‘ H = 0, 4, 5, o0
because the solution B, = - -+ = By = 0 is trivially unstable. )
2.

Generally, the S?* fuzzy sphere is constructed by the
n-fold symmetric tensor product of
(2k + 1)-dimensional gamma matrices:

B(S)B(S) = @n(n —|— 2’43)1]\{ X Ny o
P P 4 k k

By solving the equations of motions for B, and C,,, simul-

taneously, the radius parameter for the S?* fuzzy sphere

. 1

isr = ..
2k

20



[Comparison of the classical energy]

e Trivial commutative solution By = - - = B9 = O:
EB,—0 = —SB,—0 =

e S? x §? x S? fuzzy spheres (/V, — 1 + 1):

16
E52 == —552 = —JTT(BMB”)
T

= —12p°Ni(Ny — 1)(Ny + 1)
~ —O(p’n’) = —O(p’Ny).
e S8 fuzzy sphere:

5 3
Egs = —Sgs = gt n(n + 8)N,

6
~ —O0(p’n'®) = —O(p’Ny),
where the size of the matrices Bés) is

- (n+1)(n+2)(n+3)>2n+4)>2n+5)>2(n+6)(n+7)

Ny
302400

~ O(n'?).

21



3 Matrix model with manifest general coordinate invari-
ance

Here, we pursue a matrix model with the local Lorentz
invariance without the supermatrix model.

The odd-rank ( ) fields of the ten-dimensional
tensor are allocated for the matter fields (
), respectively.

e T'r(tr): the trace for the NV x N(32 x 32) matrices.

e m includes all odd-rank gamma matrices in 10 dimen-
sions:

)

— © Bip2i3 Mo

1H2H3 1°°°HK5
m_muI‘—l—'muqu‘ Ty usT
3. 5.
7
_ Bl ey H1eespeg
Myyeepr L + 9'Trl,m...ugI‘ ,

7!
where m,,,...,,. , are hermitian matrices:

in—l

Mypyyeepon_1 = 32 % (2n _ 1)!tr(mru1-"#2n—1)°

m satisfies I'’mT° = m, and the action is hermitian.

22



We want to identify m with the

= We introduce D = [(length) '| as an extension of
the Dirac operator.

m = T%D, where 7 =[(length)]?,

) 1
D —= A“IW' _|_ 514#1#2“3]:‘llllizl% _ a14#1".,%1‘#1 M5

i 1
— A P A T

is not an IN-dependent cut-off parameter, but a refer-
ence scale (~ [?).

2n—1

Aprnzacs = sax@nnit" (PTuipze_;) are hermitian dif-

ferential operators.

— They are expanded by the number of the derivatives:
k

0o 1 .
AM1'°°u2n—1 = Qpyepzn_ (:B) + kgl 5{82'1 Tt a’ikv fL( 1 k)llll'“ﬂ2n—1(w)l}°

a,)(x) is identified with the vielbein e,’(x) in the back-
ground metric.

: 1
te,'(x)T* (Bi + ZI‘”"(%-,,,,(:B)) e_%(w)
+ (higher-rank terms) + (higher-derivative terms).

D = e%(w)

The potential V (m?) is generically V (m?) ~ exp(—(m?)%).
— The damping factor is naturally included in the bosonic
term, due to the requirement that the flat-space Dirac op-
erator my = iT%I‘“Bu should be a classical solution.

— The trace for the infinitely large IN matrices is

23



1 is a Weyl fermion, but not Majorana.

We need to introduce a damping factor so that the trace
should be finite.

v = (@) + lci \X(ilmil)(w)l iy » - - az',)e_(ﬂﬂ)a.

The action is invariant under the local Lorentz trans-
formation:

om = [m,e], 6 =evp, 6 = —pe, where

1 ) 1
— 3 T HIp2 ey L ppieews
€ = —igp + 2'I‘ Epps T 4'I‘ €ty iy 6'F €y
i Nl'"NS 1 Nl"'“lO
_gr €py--pg + 1—0, Epq--pioe

e All even-rank gamma matrices are necessary for the
local Lorentz transformation algebra to close.

e c satisfies I'’c'T" = ¢, and thus the commutator
dm = [m, e]| actually satisfies I'’(dm)T" = dm.

The invariance under the local Lorentz transformation:
08 = 2Tr[tr(Vg(m*)m[m, e])] + Tr[tr(y[m, ly)] = 0,
when the fields damp fast enough at the infinity.

For a generic V(m?), the bosonic part of the action
reduces to the Einstein gravity

S~

in the classical low-energy limit.

1e(z)(TR(z) + O(2)),

(71'7'

24
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The supersymmetry transformation of the model:

Commutator of the supersymmetry transformation on
shell:

where we have utilized the equation of motion:

25



In order to see the structure of the N/ = 2 supersymme-
try, we separate the SUSY parameters into the hermitian
and the antihermitian parts as

€ =€ + 1€z, & =& + &2,

(€1, &2, €1, €2 are Majorana-Weyl fermions.)

The translation is attributed to the quartic term in the
Taylor expansion of V (m) = v3° | %2km?F:

e Bosonic fields:
Q4 7 i F i
[5ea 5£]Au — g(élr €1 + &I 62)[Ai’ Au] + e

The field a,(x) receives the translation and the gauge
transformation:

[Az" Au] = ['l:ai + ai(w), ’l:au + a,“(ag)] 4 ..
— ?(aiau(w)z fi(auai(w)) + [ai(x), au(az)1+ -

translation gauge transformation

® Fermionic fields:
[0, 0c]t) = —2a4(€1T7€; + ETVex)h A+« - -
Each fermionic field is transformed as

Gobx(e) =0+,
[66, 5£]X(Z1-..u+1)(w) — —20,4(5_1:["761 + E2I1]€2)X({1,1..-z,)(w)(s'LH_l}g 4oeen,

(*) - - - denotes the omission of the non-linear terms of the fields.
The fermions do not receive the translation.

It is a future problem to overcome this difficulty.

26



4 Monte Carlo simulation of the fuzzy sphere solution

It is difficult to substantiate the quantum stability of the
fuzzy sphere classical solution.

There are several approaches to the quan-
tum stability: hep-th/0101102,0303120,0303196,0307007,0312241

Here, we address this issue non-perturbatively through
the Monte Carlo simulation.

For brevity, we focus on the following 3-dimensional
bosonic action.

27



We start the Monte Carlo simulation from the initial
condition

for the N = 16, o = 1.0, 2.0 case.

We plot the eigenvalue distribution of the Casimir
Q= A7+ A3 + AL

0.18 T ' ' . —
0.16 a=1.0 —— 1
0.14 | o=20 ]
0.12 |

< 0.1+ |
= 0.08 t _
0.06 | |
0.04 | |
0.02 |

0 1k

50 100 150 200 250
X

The eigenvalues are peaked around

Nonperturbative stability of the fuzzy spheres!
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The stability is ascribed to the small quantum effect at
large a.
For the effective action W = jdA, e "

e Effect of the classical fuzzy sphere: O(a*N*?).
e Effect of the path integral measure: O(N?).

The quantum effect is small when o > O(ﬁ)

Main results'

e The first-order phase transition, as we vary the pa-
rameter o.
Lower critical point (A = aJ), start) al) ~ %,
Higher critical point (A{Y) = 0 start) al®) ~ 0.66.

*x The Yang-Mills phase
The fuzzy sphere is unstable.

*x The fuzzy sphere phase
The fuzzy sphere is stable.

® One-loop dominance:

The higher-loop effect is suppressed for N — oo.
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1
(o)

T
i
=
(o))
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(00]
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[ S ——

N:24(FS) e AREhit
N=8(lloop) —— L
60 I N=16(1loop) -

- N=24(lloop) =

e ;’ )

i
F—A
o
2
p)
<
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40 r

Figure 1: The hysteresis cycle of (Upper) (S)/N? and (Lower) <%T’I’Ai>.
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5 Conclusion

In this thesis, we have discussed several works concerning
the relation between the gravitational interaction and the
large- N reduced model:

Future direction:

e Pursuit of the relation to the supergravity:
The matrix model that reduces to the (type IIB) su-
pergravity in the low-energy limit.

e Description of the more general curved-space back-
ground.

e Dynamical generation of the spacetime and the gauge
group.
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