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1 Introduction

What is superstring theory?'

Promising candidate for the unification of all interaction.

Understanding of perturbative aspects of superstring theory.
e The energy of gravity is free from divergence.

e Prospect for reproducing standard model (Eg X Eg heterotic superstring theory).

= Infinite number of vacua.

= No guiding principle for determining the true vacuum.

e Nonperturbative aspects of noncritical string theory
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[Second string boom (late 1990’s)j

Nonperturbative aspects of superstring

theory.

e Discovery of the D-brane i
11dim SUGRA

ES8*E8
heterotic

e T/S duality of string theory

e Proposal of matrix model as a con-
structive definition (nonperturbative for-

mulation) of superstring theory
SO(32)
heterotic

type IIB

Completion of the constructive defini-
type |

tion of superstring theory.
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Matrix model'

Promising candidate for the constructive definition of superstring theory.

F. David Nucl. Phys. B257 (1985) 543.

Path integral of string theory:

(e

h=0 h=1 h=2

Z = h%_.fo | dg exp(—BA + vx).

e A =_/d*,/g = (area of world sheet)
o Sy = % fdzs\/ggaﬂaaxuaﬂxﬂ is equivalent to A for D = 0.

e x = ,-/d’¢,/gR = 2(1 — h) = (Euler character of Riemann surface).

h = (genus of the world sheet)
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Discritization of the worldsheet of string theory into equilateral triangles.

0-dimensional bosonic string theory < ¢° one-matrix model S = (%tr P? — tr ¢3> .

[Studies of noncritical string theoryJ J. Distler and H. Kawai, Nucl. Phys. B321(1989) 509

Quantization of D < 1 noncritical string theory.

Calculation of string susceptibility:

Zx A3 (y=2+4 %(D — 25 — /(25 — D)(1 — D))).

(Nonperturbative calculation of matrix model| E. Brezin and V.A.Kazakov, PLB236 (1990) 144.

Nonperturbative analysis of one-matrix model via orthogonal polynomial method.

—1+5h
2

String susceptibility -, = (D = 0) agrees with Distler and Kawai’s result.

Important test of the legitimacy of matrix model.



Numerical simulation of the large-IN reduced model, Takehiro Azuma, Feb. 22 6

IIB matrix model

The IIB matrix model = promising candidate for the constructive definition of

superstring theory.

S=N (—%tr (A, A2 + %tr JTH[A,, ¢]) .

e Dimensional reduction of N = 1 10-dimensional Super-Yang-Mills (SYM) theory
to 0 dimension.
A,, (10-dimensional vector) and 1 (10-dimensional Majorana Weyl spinor) are

N xX N matrices .

e Matrix regularization of the Schild from of the Green-Schwarz action of the type

IIB superstring theory.

e Many-body system of superstrings.
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e N = 2 supersymmetry:
The theory must contain spin-2 graviton if it contains massless particles.
* homogeneous: 6V A, = iel ,1p, 6V = %I"“’[AN, A le.
. 2 2
* inhomogeneous: 5§ )Au = 0, éé )¢ = &.
Linear combination 6") = §() 4§ §2) = (§(1) — §(2)),
[géa), Séﬂ)]¢ — 0,
6,64, = —2i8°PeT .¢.
This leads us to interpret the eigenvalues of A, as the spacetime coordinate.

e The action of the IIB matrix model does not include the integral.

The numerical simulation is easier than that of the quantum field theory.
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2 Simulation of matrix models

Rudiment of Monte Carlo simulation'

Given C, = (initial configuration), we generate series of configurations

Co—Ci—>:--—C,, > Cphiqg — -
Markov chain: Probability P(C,,_; — C,) depends only on C,,_; and C,,.
w,[C] = (probability of obtaining C at n-th step).

wn[C’] = gwn—l[C’]P[C, — C], ’wo[C] = 50’00.

Choose P[C,,_; — C,] such that w[C] = lim,,_,,, w,[C] = e~5I°],
e Detailed balance condition: e~ SIC1P(C — C’) = e SI€1P(C’ — C).

e Ergodicity : For any C, C’, there is a finite probability of moving from C to C’

within finite steps.

Then, w[C] = lim,,_,o w,[C] = e~ 5I¢] is satisfied.
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We calculate (O) using a Markov process.

e Thermalization: We have to discard sufficiently many steps in order to achieve
equilibrium.

e autocorrelation: Configurations generated by the Markov process are not statis-
tically independent.

Two algorithms to achieve the equilibrium:

e Heat bath algorithm: divide the whole system into subsystems: C = {C),C®),..., C!

For a subsystem CY), generate new C’() with the probability

P[C'] x exp(—=S[CY,...,C'@D), ..., CP¥)]),

e Metropolis algorithm: Generate a trial configuration C'.

For a uniform random number = € [0 : 1], we accept C’ when = < e 2%

(where AS = S[C'] — S[C]).
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(a) Simplest case: quadratic U(IN) one-matrix modelI

S Nt ?
= —1r .
2

To analyze this model via the heat bath algorithm, we rewrite the matrix ¢ as

bi; = Tij+1Yij

R () /2N . o

¢ZZ — \/N, ¢ B wij_iyij (fOI' 1 < ]).
7T V2N ?

The N? real quantities a;, z;j, y;; comply with the independent normal Gaussian

distribution.

1N 1
S = 52‘; a; + 2 > ((zi5)* + (9i5))-

1<J
N 1N 2 1 2 2
Z=[1lda; Il dmyjdyjexp|(—- Y al—- ¥ ((@)*+ (¥:)))]-
i=1 1<i<j<N p 2 1<i<j<N

ai, Tij,Y;; are updated by the Gaussian random number.

There 1s no need for thermalization or no autocorrelation.
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/T doole—0x’/2 .

[ dze—ax?/2

Feynman rule of this model (use the Gaussian integral % =

%(aiak) = %5114: (t=27,k=1)
(Pijdr) = _ , Al Tijxi; — Yijyi;) =0, (1=k,j=1) o
! %((wij + 1Y) (i + tym)) = 2? Y 7o ) _ . (t#J, k#I
TN TiiTij — YijYji) = > =1, =k)
1
= Nailajk
Some exact results:

1 1 1 1
—t 2y = — i1 Dii = X -—XN?*=1
<N r¢°) N(¢J¢J> NN )

<%tr ¢ty = %(Cbijqukﬁbqubli) =24 —.

Generation of the uniform random number

We use the congruence method to generate the uniform random number € [0 : 1].

e We give the random seed zi, such as z; = time().

e We solve the recursion formula 2z, = az;y +c¢ (mod 23! — 1) .

The choice (a,c) = (5'',0) is known to give a good pseudo-random number.

e The sequence {,;7*} gives a uniform pseudo-random number [0:1].
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Generation of the Gaussian random number

e We take two uniform random numbers =,y € [0 : 1].

e We introduce the quantity » = +/—a?log x2.

This complies with the probability distribution
27 72
P(r)dr = P(a:)—dr = —exp|——|dr.
a? a?
e We next introduce the quantities
X =rcos(2wy), Y = rsin(2ny).

They comply with the probability distribution

1
P(r)drdy x exp (——2(X2 -+ Y2)> dXdy.
a

12
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(b) Quartic U(IN) one-matrix model I

1 g
S:N(—t 2 _Z¢ 4.)
2r¢ 4r¢

This action is unbounded below.

Metastability of the origin in the large-

N limit.
Auxiliary fields Q (where a = \/g): L35
' T num‘ericalxvaluex —
i N ; ; , 13 | analytical value e 1
§ = 7 (r¢* +trQ* - 2traQg?) 125 |
N s 12} .
- _ 2\2 . E e
S (Q — ad?)? + 8 e B
Update Q as -
1.05 | e
a Tij + 1Yij p L™

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
g

i 2 2
i = o4 iy Wij = Q ij
Q \/N —|_ (¢ ) ’ Q J \/m —|_ (¢ ) J?
where a;, ;j, y;; comply with the normal

Gaussian distribution.
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Dependence of ¢;;:
- N
S = ?(qb,-,-)z\(l — 20Qi;) —Ni; (ajgi(cbinij + Qjidij)) -

:ci

vl

=h;

Update of ¢;;: ¢y = \/%—c + %
Dependence of ¢;;:

S = N(1-— a(jS + ij))l|¢ij|2 — N(¢ijhji + ¢jihij), where
=y

hij = a(Y (PiQrj + > Qixdrj))-
k#jy k#1

iy, |
Update of ¢,;: ¢;; = ZiiTYii 4
P ¢zg ¢’LJ \/m ‘I‘ cij

Analytical large-IN result:

E.Brezin, C.Itzykson, G.Parisi and J.Zuber, Comm. Math. Phys. 59, 35 (1978).
2

1+ 1T =129

1 1
(Ntr d*) = §a2(4 — a?), where a® =
Eigenvalue distribution

1
p(x) = 2—(—99132 — 2ga® + 1)v4a2 — z2.
™

14
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(c) The bosonic IIB matrix model I

T. Hotta, J. Nishimura and A. Tsuchiya hep-th/9811220.

— _ﬁ d 2 __ _E 2 2 A2
S = > otr [Aw A,,] = > tr {Au, A,,} + 2N > tr (A“AV),
4 po=1 2 1<p<v<d 1<p<v<d

defined in the d-dimensional Euclidean space.

Auxiliary field Q,, (where G, = {A,, A,L}):

~ N N
S: t 2 — 2 VGV 4A2A2 P — t V_GVZ S.
2 1Suz<:u§d : (Q’“’ (QuvGpv) + 4( p u)) 9 1§u2<:1/§d r (Qu w)” +
Update of Q,.:
a4 xij + 1yi;

(Quu)ii — \/7% + (G/w)iia (Q/w)ij — \/m + (GuV)ija
Dependence of Aj:

S

—Ntr (Th\A)) + 2Ntr (SyA3) + - -+, where

S}\ = (Ai)a I = X (AMQ)\M + Q)\uAu)°
HFEA BE
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e Dependence of (Ajy):
S = 2N(S5\)i(A,)% — 4Nh;(A,)i, where
h; = g[(TA)ii - 2j§i((sx)ji(AA)z'j + (S1)ij (Ax)ji)]-

Update of (Ajy)q;:
a; hi

VAN (55)i; i (Sa)ii

(Ax)i =

e Dependence of (A));;:
S = 2Nci|(A)ij|> — 2Nh;i(Ay)ij, where
cij = (Sx)ii + (Sx)jj
iy = ()5 = £ (S)a(A = X (S)ki(Ana-

Update of (AA)z'j:

16
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Exact results derived from Schwinger-Dyson equation:

1 o 1
—(tr A A = d(1 - ).

(Proof) 0 = [aia's s O frea,)es
[a'a4 X 3 oaaltr (" Aue™]
N2_-1

= [d'A > [tr (t*t%)de™ + Ntr (t*A,)tr (£°[Ay, [A,, AL]])e™ ]

= [d'A[d(N? —1) + Ntr[A,, 4,]*] e”®
N [d®Atr ([A“,A,,]Z)e_s)

- ( / ddAe—S) X (d(N2 —1) + dide—S

t% is the basis of the SU(IV) Lie algebra:

N2-1 1
tr (£t°) = 6%, X_:l (t%)ij (") = dabjr — Naz‘ﬂsm-

The matrices A,, are expanded in terms of t* as A, = Zi\zl—l ALt

N2-1 N2-1 1
Z tr (taA)tI‘ (taB) = Z AjiBlk(ta),;j (ta)kl = Ajz'Blk(éiléjk — Ndijékl)
a=1 a=1

1
= tr (AB) — Ntr Atr B = tr AB.

Equation of motion
oS

6—14;3 = —Ntr (t*[A,, [A,, AL]]).

17
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3 3d bosonic Yang-Mills-Chern-Simons model

T. Azuma, S. Bal, K. Nagao and J. Nishimura, hep-th/0401038

Motivation to consider the fuzzy sphere:

e Relation between the noncommutative field theory and superstring theory.

e Prototype of the curved space background of large-N reduced models.

Yang-Mills-Chern-Simons (YMCS) model = a toy model with fuzzy sphere solutions:

1 5 2t
S = Ntr —E[Au, AV] + TGIJ’VPAIJ’AVAP .

e Defined in the 3-dimensional Euclidean space: (u,v, p = 1,2,3).

e Classical equation of motion: [A,,[A,, A,|] — ta€y,p[A, Ayl = 0.

e Fuzzy S? classical solution A, = X,, = oL, (where [L,, L,] = i€,,,L,).
L, = (N x N irreducible representation of the SU(2) Lie algebra).

Casimir operator: Q = A7 4+ A? + A7 = R’1y, where R* = a2N24_1.
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(Monte Carlo simulation of 3d YMCS model]
Heat bath algorithm of the 3d YMCS model:

21alN

- N
S= X (tr wa — Ntr (Q..G,v) + 2Ntr (AZA?/)) + Teuvntr A,ALA,.

1<p<v<3
Update of Q,,: parallel to a = 0 case (in Sec. 2).

Dependence of Aj:
5’ = —Ntr (T)\A)\) + 2N tr (S)\Ai) + .. ’ where

S)\ = ug)\ Ai, T)‘ = HEA(AMQAM —|— Q)\NAN) \—22.&6)\“,,44“44,{

the only difference!
Update of Ay: parallel to the o = 0 case, except for T).

Initial condition:

A0 _ X, (fuzzy sphere start),
. 0 (zero start).

Discontinuity:

2.1
vV N

al¥) = 0.66 (zero start).

Cr

al) = (fuzzy sphere start)

19
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First-order phase transition:
® o« < o Yang-Mills phase
Strong quantum effects.
Behavior like a = 0 case.

(%) ~ O(1), (ytr AZ) ~ O(1).

® v > «,: fuzzy sphere phase

Fuzzy sphere configuration is stable.

N=8(1loop)

N=24(1loop) - 1 .
0.5 0.6 0.7 0.8

2
<S>/N
1 1 1 1 1 1 1 1 1
© 0o N o o~ WN PP O B
T T T T T T T T

o
N

Yang—-Mills phase

Fuzzy sphere phase

\ x
f@%
N >
O X
oGO
O
Q0
O
b OOC
OO0 O

20
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Phase transition from the effective action
The effective action I' is saturated at the one-loop level.
T. Imai, Y. Kitazawa, Y. Takayama and D. Tomino, hep-th/0303120

Effective action at one loop around A, = tX, (where & = av N).

Fl—loop ~4 t4 t3
— X o | = — — log t.
N? g 6) 8

The local minimum disappears at & < a!!) = (g)% = 2.086- - -.

21
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Properties of the multi-fuzzy spheres Expansion around k coincide fuzzy spheres

A, =X, + Auv where
X, = aLl™ ® 1;.

Quantum field theory with U(k) gauge group.
Fuzzy sphere is a compact manifold.
It is realized by the finite N = nk matrices.

It facilitates the numerical treatment of the gauge group.

Simulation from zero start Ag’) =0 for N =16, a = 2.0.

Metastability of multi-fuzzy-sphere state.

I, (6—5—4—3—2—1) 0
A0 =g — e A, =af * — A, =al,
H 0 [,(10—+11-12—513—14—15) < - ’
initial state . ® j stable vacuum

metastable vacuum
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Analytical results

Calculation of the free energy

W = —log ([ dAe™®).

k = 1 has the lowest free energy to all

order of perturbation.

O S — T - R ——

k=1 ——
-40 B k:3 ,,,,,,,,,,,,,,,,
50 k=4
-60

W/N?
W
(@) o

a

0
-10 ~ <6,10> |
T - <5,11>
-20 ~<4,12> .
S L——L - <313>
o -30 ¢ ~<2,14> -
40 i
-50 ' '
0 100 200 300
sweeps/1000
300
0 SRR R——
=S 200 i y \
C_G _ —
>
3
2 100
]
;

0 100 200 300
sweeps/1000
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4 Conclusion

We have reviewed the basic technicality of the heat bath algorithm of the large-IN

reduced model.

The simulation of the IIB matrix model is much easier than the quantum field

theory, since the IIB matrix model is the totally reduced model.

We investigated the matrix model with the Chern-Simons term, to deepen the

understanding of the fuzzy-sphere background.

e Numerical treatment of the supersymmetric case via the hybrid Monte Carlo

simulation.
e Extension to the four-dimensional manifolds: fuzzy S?%, CP?, S2x S2.

e 3d bosonic massive YMCS model (nontrivial gauge group?)



