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1 Introduction

Large-N reduced models are the most powerful candi-
dates for the constructive definition of superstring theory.

Matrix models on the homogeneous space'

Several alterations of the IIB matrix model have been
proposed, to accommodate the curved-space background.

e The matrix model with the Chern-Simons term:
(hep-th/0101102,0204256,0207115)

These matrix models accommodate the curved-space
fuzzy-manifold classical solutions, based on the homoge-
neous space.

A homogeneous space is realized as G/ H:
e G = (a Lie group)
e H = (a closed subgroup of G)

S? = SU(2)/U(1), S* x S%, 8* = S0(5)/U(2),
CP? = SU(3)/U(2),---.

Such curved-space fuzzy-manifold solutions are inter-
esting in the following senses:

e More manifest realization of the curved-space back-
ground:
Essential for an eligible framework for gravity.

e We may get insight into the dynamical generation of
the gauge group.



2 The model and its classical solutions

Here, we scrutinize the bosonic matrix model that accom-
modates the four-dimensional fuzzy manifold.
In the following, we focus on the fuzzy CP? manifold.

1 8 0 27 8
S=Ntr |— > [AL, A +— X fuwsALALA,|.

1 Hv=1 3 Hov,p=1

e Defined in the 8-dimensional Euclidean space:
(/J,,]/,... — ]_,...,8)
e A, are promoted to the N X IN hermitian matrices.

® f,.., are the structure constant of the SU(3).

V3

fi23 = 1, fass = fers = PR

.f147 — .f246 — f257 — f345 — f516 — f637 — 5

Its equation of motion
[Av,s [Aps Ay]] — i fup|Av, Ap) = 0

accommodates the following two classical solutions:

[(a) fuzzy S? sphere]

A(S?) _ aL™, (p=1,2,3),
H 0, (otherwise).

The Casimir Q = 22:1 Ai is given by
N? -1
4

2

Q:szlN:a 1n.



[(b)fuzzy CP? space]

The fuzzy CP? space is realized by the (m, 0) represen-
tation of the SU(3) Lie algebra:

(CP?) _ (m,0)
A, = aT ;™.
This corresponds to the SU(3)/U(2) homogeneous space.

This space is realized by the symmetric tensor prod-
uct of the fundamental representation of the SU(3) Lie
algebra t,:

Tém,o):(tu®13®,,,®13)Sym+(13®tu®...®13)sym—i—-..

m-‘ffold
+(13®- - @13 ® t,)sym, wWhere
(010 (0 =i o0 (1 00
tt=-|100]|,t==|i 0 0|, t5==-|0 —1 0|,
2{o00 0 20 0 o 210 0 o
(001 (00 —i (000
ts=-|000]|,t5=-|00 0 |,t4==|001],
2{100 250 o 2{o10
(00 0 10 0
t-—=-|0 0 —i 01 0
2{o0i o 00

Here .y, denotes the symmetric tensor product.



For the orthonormal states |2) and |j), the matrix ele-
ment of A is (A);; = (¢|Al7).

The usual tensor product is
(i1, 92| A ® Blj1, j2) = (i1| A1) (22| B|j2)-

The two-fold symmetric tensor product is

sym (%1, 22|A ® B|j1, j2)sym» Where

|j17j2>sym - {

l71)132)>
T5(l)ld2) + 132)151)),  (for ji # j2).

(fOT J1= jz),

The symmetric state for the three products:

11,1, 1)sym =

|17 ]-9 2>sym =

D),

|17 29 3>sym =

For the 3 X 3 matrices A and B

a1; Qai2 Qi3
A= Q21 Q22 023
az1 Qz2 ass

1
Z5(12)13) + (the other

,B:

bll
b21
bz

the symmetrized product is defined as

1
7 (DID12) +1D2)11) + [2)[1)]1)),

b12 b13
b22 b23 9
b32 b33

5 permutations)).

(A® B)sym
|j1 = 1’j2 = ]-)Sym |1’2>sym |1’3>sym |2’2>sym |23 3>sym |3’ 3>sym
. . b b b b b b
sym(’Ll =1,iz = 1| ai1bi1 aiz 11\}-;11 12 a3 11\-/}—51111 13 ai2b12 % ai13bis
sym(1,2| Ci2,11 Ci2,12 Ci12,13 C12,22 Ci12,23 C12,33
= sym (1, 3| C13,11 C13,12 C13,13 C13,22 C13,23 C13,33
b b b b b b
sym (2, 2] az1b21 a2z 21\}-;21 22 a23 21\-/}—51121 23 az2bos a2 23\-/}—51123 22 a23bos
sym (2, 3| C23,11 C23,12 C23,13 C23,22 C23,23 C23,33
agob ag1b agab ag1b agob agzb
sym(3,3| as1bs1 32 31;5 31ba2 33 31}-5 31bas asabso 32 33}-5 33b32 assbss
a21b a11b a22b a21b ai2b a11b a23b a21b a13b a11b
Ci2,11 = 21bi1+ai11b21 Ci2,12 = 22bi11+az1bi12+ 212 21+ai11 22 Ci2,13 = 23bi1+a21big+ 213 21tai11 23
b V2 b biztaszb f baztaizb b(ﬁ) b
— a22bistaioban — a22biztasgbiaotaizbaztaizgbar _ a23biztaigbog
Ci2,22 = Vel , Ci2,23 = 52 s C12,33 = 2 ,
_ biztailb — a32biitazgibiztaizbaitaiibaz — a3abiitagibiztaiazbzitaiibas
C — agi1biitaiibay C — @agabiitazibio C —
13,11 2 s 13,12 52 s 13,13 (vV3)2 ,
— a32biztaiabaz — a32biztazzbiztaizbaztaizbaz — a3abiztaiabas
Ci13,22 = Vel , Ci3,23 = 5\2 s C13,33 = 2 ,
_ asi1bzitaz1b31 _ a32bzitagibzatazabaitazibaz _ a3abzitagibaztazabzitazibas
C23,11 = 72 , Ca3,12 = )2 , C23,13 = V3)8 R
__ a32bzztaz2bza __ a32bzztazzbrztazabaztazzbaz _ a3abzgztazazbss
C23,22 = RS, Ca3,23 = (V3)2 s C23,33 = Sy



Using this definition, we derive the following formula:

4 0 0 0 0 0O O 0 O
0 -2 0 6 0 0 0 0 O
0 0 -2 0 0 0 6 0 0 323838
: 1 [0 60 =20 00001 1l004000
> t.®t,) = —|0 0 0 0 4 0 0 0 0| = — 00040 0
p=1 12/'9 0 o0 0 0 -2 0 6 0 12
000040
0 0 6 0 0 0 —2 0 0 00000 4
0 0 0 0 0 6 0 —20
0O 0 0 00 0O O O 4
1
= 5(13®13)sym-
The Casimir is thus given by
8
Q — pZCPZ]-N:aZuz_:lTlEm’O)TlEm’O)
=t OLE QL)+ -+ (130 - Q13®t))
m terms
+ (., ®t, Q130 - @ 13) + -
m(m—1) terms
4m 1 m(m 4+ 3
= o (4 gl = 1)) 1y = @

where we have used Eizl(tu R tu)sym = %(13 ® 13)sym and

8 2 __ 4

The matrix size of this representation is
(m 4+ 1)(m + 2)
3

Thus, this representation is realized for a limited size of
the matrices N = 3,6,10,15,21, - -.

N =

, (form=1,2,3,--.).



3 Monte Carlo simulation of the matrix model

We analyze the matrix model through the heat-bath al-
gorithm of the Monte Carlo simulation.

In this sense, our approach is nonperturbative.

Heat bath algorithm of the matrix model'

[(a) Warm-up: quadratic U(IN) one-matrix model]

We start with the simplest case — quadratic U(IV) one-
matrix model:

S Nt >
= —1Ur .
2

We analyze this model via the heat bath algorithm. To
this end, we rewrite the U(IN) matrix ¢ as

bii = ﬁ’ V2N (for 7z < j).

¢ji — mij/—;;gija
The N? real quantities a;, z;j, y;; comply with the inde-
pendent normal Gaussian distribution.

__ Tty
a; { Gij = ot

1x 5,1 2 )2
S = Ez; a; + 2 > (i) + (yi5)7)-

i<j

al Ly , 1 2 2
Z=[1lda; I dmidyjexp|—Y al—= > ((&y)*+ wi)?]-
i=1 1<i<j<N 20 2 1<i<j<N

ai, Tij,Y;; are updated by the normal Gaussian random
number.



Generation of the uniform random number

We use the congruence method.
e We give the random seed zy, such as z; = time().
e We solve the recursion formula

Zpt1 = azp + ¢ (mod 2°' — 1).

The choice (a,c) = (5'1,0) is known to give a good
pseudo-random number.

e The sequence {.;i*-} gives a uniform pseudo-random

number [0:1].

231 1

Generation of the Gaussian random number

e We take two uniform random numbers x,y € [0 : 1].

e We introduce the quantity » = +/—a?logx?. This
complies with the probability distribution

27 r?
P(r)dr = P(:U)—dr pris o dr.

e We next introduce the quantities
X =rcos(2my), Y = rsin(2wy).

They comply with the probability distribution

1
P(r)drdy «< exp (——2(X2 -+ Y2)) dXdy.
a



[(b) The bosonic IIB matrix model]
T. Hotta, J. Nishimura and A. Tsuchiya hep-th/9811220.

We investigate the D-dimensional bosonic IIB matrix model
via the the heat bath algorithm:

N
4

D N
S = > tr[4,AP=—-" Y tr{A4,, A +2N Y tr (AZA?/)

p,rv=1 1<pu<v<D n<v

This action is equivalent to 5’, after integrating out Q.
(where G, = {A,, AL}):

~

S=NY Gtr Qr, — tr (Qu.Guy) + 2tr (AZAﬁ))

p<lv

N
= — 2 tr(Qu — G/W)Z + S.

2 p,<1/

Then, Q,, is updated as

a Tij + 1Yij

(QMV)’i’i — T;V + (GHV)iia (QuV)ij — \/m + (GuV)ijv

We next update A). We extract the dependence of A,.

S = —Ntr (ThA)) + 2Ntr (SyA2) + ---, where
Sx= X (Ai)a = X (AIJ»Q)\N» + QAuAu)°
BFA BFA

e The diagonal part A, is updated by extracting the
dependence of (Ay);;:

S = 2N (S)\)ii(Ar)% — 4Nh;(Ay)i, where
h;

N
= Z[(Tx)z‘z‘ — 2j§i((sx)ji(z4x)z’j + (S2)ij (Ax);i)]-
Then, (A));; is updated as
i h;
(A)\) .. @ _|_

i \/4N(S)\)ii (S)\)ii.



e The other components (A));; are updated likewise by
extracting their dependence:
5’ = 2NC,‘j|(A)\)7;j|2 — 2Nhji(A)\)ij, where
cij = (Sx)ii + (Sx)js>
1
hij = S(TN)ij — 2 (S0)in(Ax)ki — 2 (S3)ki (Ax)it
ki k]
Then, (A,);; are updated as
Tij + 1Y | hij

Ay = :
( A)J 4Nhij +Cij

[(c) Addition of the Chern-Simons termj

The Chern-Simons term is linear with respect to cach A,,.

The algorithm is similar for the following actions:

N 1 38 , 2o
S H SS2 = Ntr —Z Z [Al"’ Al/] + TGI‘J’PAI‘AVAP 9
=1
4 1 > 2 A
S : SS4 = Ntr 2 Z [Au AL]® — geul"'ﬂsAulAuzAﬂsAlMAus ’
p,r=1

) 1 8 , 2l &
CP : Scpz = Ntr —Z Z [AM,A,,] 4+ — Z fuvpALALA, |,

p,r=1 3 p,r=1
1 S 21
S22 x S? Ss2ys2 = Ntr (_Z Z [14#,,1411]2 + ?f;(l,ij;XSﬂAMAVAP) )
p,r=1

where the structure constant for the S? x S? model is

X1€pupy (fOI‘ K, v, p=1,2, 3)7

f;(tlS/2PXS2) = Q2€u0p, (fOI‘ KsVy p = 4,5, 6)’
0, (otherwise).

We have only to replace T, as

T, = Y (AuQx.+ QxuAL) + TP(CS), where

BFEX
—2ia Z2,1/:1 €ppr Ap Ay, (for 52),
p(CS) _ ) —2ax,, Four Ap Ay, (for CP?),
P —2t Eﬁ,,:l f,(,i,,xs VALA,, (for S% x S?),

A st €opnpa Ay Apy Apg Apys  (for §%).
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4 Fuzzy CP? classical solution

We start from the fuzzy CP? initial condition:
(0) — A(CP?)
A=A

To see the behavior of this solution, we discuss the fol-
lowing observables:
e The action S.
. 1 8 2
e The spacetime extent -tr X =1 Au'

Here, we introduce the rescaled parameter

1
a = alN1%,

[ﬁrst—order phase transition]
We have a first-order phase transition, at the critical point

& = _(sz)(_ (CP2)N4 ~ 2.3).

e o < a®®): the effect of the Chern-Simons term is
negated, and we see the following behavior typical of
the pure Yang-Mills model:

1 1,
~2(8) = 0(1), (L tra?) ~ 0(1).

o x > a((fpz): the fuzzy CP? is metastable.

[one—loop dominance]
The numerical results are close to the one-loop result at
a > a(cpz):

at 7 1 1 8 2a? 4

~N o [ - 2 ~Y —_
( ) ~ + \/N(Ntr M§1A”> ~ —

11



<(1/N) tr A%>/sqrt(N)

0 e
_5 L
_10 i
_15 B
-20 N=15
-25 + N=21 -
-30 N=28
2(5) classical ——
45 .Onle—Ion L
0 1 2
a
12 e
N=15 ——=—
10 + N=21 =
g | N=28 s
classical ———
6 - oneloop
4 |
2 | &
O Fa | n&F
0 1 2
a

12




(finite- N effect]

We extrapolate the finite-/N effect, by plotting these
observables against %z

e N =10,15,21,28,36 (m = 3,4,5,6,7).

e & — 3.0 is fixed.

-8.2 \ w w w w 5.6

-84 ¢ 1 . 55|

8.6 | z

8.8 | = 5.4 | )
z 9-52) 7 f 537
)\ 9.2 <
¢ 94t s 52

-9.6 % 5.1 t

-9.8 ¢ Ava 5|

-10

-10.2 : : : : : 4.9 : : : : :

0 0.02 0.04 0.06 0.08 0.1 0.12 0 0.02 004 006 0.08 0.1 0.12
1/N 1/N

e The finite-N effects are of the order O(+).

e We have a deviation from the one-loop calculation at
large IN.

Since the deviation is rather small, we nevertheless re-
gard this system as retaining the “one-loop dominance”.

In fact, the three-dimensional model with fuzzy S? clas-

sical solution (scrutinized in hep-th/0401038) also has the
same deviation.

13



The critical point dgfpz) ~ 2.3 is consistent with the
one-loop calculation.

We start with the one-loop effective action around
A, = BTIEm’O) at large IN.

34
Wep2 ~ N? (32k (35 — _6_3) +6log B3 + (const.)) .

ow

This has a minimum at B%Pz — 0, namely

f(B) = (B'—ap’) +3=0.

f(B) has a minimum at 3,,;,, = &.

At this critical point, we have

_ 13
f(/Bmln) = __(_)4&4 +3 = 0.
34
Then, the critical point is determined as

4
aCP) — °_ ~ 2.3094011---.

cr \/g -
This is consistent with the numerical observation.

A f(B)

—270%256 + 3

14



5 Fuzzy S? classical solution

We next start the simulation from the fuzzy S? initial
condition:

(0) — 4(%
AV =Ar".

We plot the observables against the rescaled parameter

D] =t

a = oaN2z,

[ﬁrst—order phase transition}

We have a first-order phase transition, at the critical
point

o < agfz): The behavior is similar to the pure Yang-
Mills model.

o o > a8): the fuzzy S? is stable.

[one-loop dominance}

The numerical results are close to the one-loop result
at o > agfz):

1 (s) at 7

N2 24 2’
1 1 8 a2 6
—(—tr A%y ~ — — —
N<N /.LXZ:I “> 4 &2

15



<S>/N?

50 | classical

60 L— one-loop
0 1 2 3 4
0
a
o | N=15 —=—
= a N=21 -
e N=28 e
< classical .
= O one-loop i
z 5l
S 3 s
v o2
1 L
0
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(finite- N effect]

We extrapolate the finite-/N effect, by plotting these
observables against %z

e N =6,10,15, 21, 28.

e & = 4.0 is fixed.

-6.85 w w w w w 3.63

69 | 362 |
' 361
-6.95 < 36
L, 7 c 3597
3 5 358
v 7057 Z 3571}
J ! {
71t T 396
355 |
7.5 ¢ 1 354 | .
7.2 353

0 0.005 0.01 0.015 0.02 0.025 0.03 0 0.005 0.01 0.015 0.02 0.025 0.03
1/N? 1/N?

For the fuzzy S? classical solution, we likewise see the
nonperturbative deviation from the one loop at large IN.

The critical point is derived from the one-loop effective

action as
- (S2) 32
a,, ' = Yy ~ 3.2659863 - - ..

17



6 Dynamical generation of the gauge group

We discuss the k (kK > 2) coincident fuzzy manifolds
(multi fuzzy CP?), to see the dynamical generation of the

gauge group.

The expansion around the k coincide fuzzy manifolds
gives rise to the U(k) gauge group.

[fuzzy CP? space]
We define the k coincident fuzzy CP? manifolds as

(k,CPz) — (m,0)
AM = aTu ® 1k;

The size of the matrix is N = k(m+1%(m+2).

We launch a simulation for £ = 2, m = 3,4,5 (N =
20, 30, 42), starting from Ag’) = Af‘kzz’cpz).

Before this multi fuzzy CP?’s decay, the system has the
first-order phase transition at

ak=2CP%) ~ o 7.

Cr

At a > ag’;’=2’CP2>, the system retains the one-loop domi-
nance, in which the observables are close to the one-loop
results.

1 (S) a4+7
N? 6k 2
1 (itrAz 22 4
vIN “ET Bk a2

18



<S>/N?

<(1/N) tr A%>/sqrt(N)

classical

~one-loop

classical
one-loop

,,,,,,,,,,,,,,,,

O F NN W b 01 O
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The critical point agrees with the one-loop calculation

4
(* ki ~ 2.3094011k1.
V3
We discuss the stability of the multi fuzzy CP? from the
one-loop effective action.

(—X(k,CPZ) e

This classical solution retains the one-loop dominance.

Thus, we discuss the stability of the k coincident fuzzy
CP?’s via the one-loop effective action:

N 2

—4 3
Q
%% — N?|—— +6loga+3log —|.
k,CP2 ( 6k og og k)

When the single fuzzy CP? (k = 1) is more stable than
the the multi (k > 2) fuzzy CP?’s, we obtain

18 4
Tk

Since we always have G, cp: < a@®") when the fuzzy
CP? is stable, we have

- — (k,CP?) -
ak,CP2 < acr, < .

Therefore, the single (k = 1) multi fuzzy CP? is always
the most stable.

This leads to the dynamical generation of the U(1)
gauge group.

20



[fuzzy S2 space]

We likewise discuss the k coincident fuzzy S? spaces
(multi fuzzy S?):

A(k,s2) _ aLLn) ® ]_k;, (fOI‘ M = 1, 2, 3),
H 0, (otherwise).

The size of the matrices is N = nk.
This system likewise retains the one-loop dominance.

The critical point is calculated as

32k
als) = - = 3.2659863V/k.

The multi fuzzy S? retains metastability for & > &g’;”sz).
The one-loop effective action at large N is

~4

Q

N
W,I{,,Sz:JN2 (— —|—610g6¢—|—610gk).

24k?

If the single (k = 1) fuzzy S? is more stable than the
multi (k > 2) fuzzy S*’s, we have W_; 2 < W, g2:

1

o 144log k\*

a>apgr=|——7| -
1=

Since o, g2 < &g’;”sz), we have in the fuzzy S? phase

~

Therefore, the single (k = 1) multi fuzzy S? is always the
most stable, which leads to the dynamical generation of
the U(1) gauge group.

21



7 Fuzzy CP? versus S2 — which is the true vacuum?

We determine which is the true vacuum, according to the
one-loop dominance.

The one-loop effective action around the fuzzy CP? and
S? is

3 m
Wep2 = _m('n;;— )044N2 +3 Y (c+1)%log[Na’e(c + 2)]
a4 c=1
~ N2(— —|—610ga—|—610gN),
1 N-1
Wg = —ﬂa4N2(N2 —1)+3 ¥ (21 + 1) log[Na?l(l + 1)]
=1

, [ o*N?
~ N°|— o4 + 6loga + 9log N | .

The difference is calculated (at large IN) as
N2

N
A = Wsz —WCPz = N2{a4 (—24+6) +310gN}.

e The classical effect is O(IN?).

e Whereas, the one-loop quantum effect is O(N?log N).

Therefore, A < 0, namely Wg. < Wipe.

The fuzzy S? is the true vacuum, and the fuzzy CP? is
a metastable state.

22



Nevertheless, the fuzzy CP? state retains a very strong
metastability.

We start from the initial condition ALO) = Agcpz), for
N = 10(m = 3),a = 1.4 (in which the fuzzy CP? is
metastable).

The initial fuzzy CP? state endures the 5 X 107 sweeps.

The eigenvalue distribution f(x) of the Casimir Q is
defined as

Fl@) = & (3@ = A)),

where {\;} = (eigenvalues of Q).

Measured after the 5 x 107 sweep, f(x) is plotted below:

0.4 x x
0.35 | i~
0.3t Do
0.25
0.2 ¢
0.15 |
0.1t
0.05 | g .
0 R
0 5 10 15 20

N=10,a=1.4 -~

£(x)

Here, the radius of the fuzzy CP? space is

2 (m + 3) — 11.76

2 _
Pcp2 =— &
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8 Conclusion

In this talk, we have discussed the bosonic matrix model
that incorporates the four-dimensional fuzzy CP? space.

e The true vacuum of this matrix model is not the fuzzy
CP? but the fuzzy S2.

e The fuzzy CP? is realized as a metastable state.

e Both of these solutions have the one-loop dominance,
with a small deviation at large IN.

e The k£ (k > 2) coincident fuzzy spaces are always un-
stable both for the fuzzy CP? and S2.
This leads to the dynamical generation of the U(1)

gauge group.
Future works:

e The investigation of the supersymmetric system:
We expect that the four-dimensional fuzzy manifold
might be the true vacuum due to the supersymmetry.
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