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1 Introduction

Constructive definition of superstring theoryl

A large N reduced model has been proposed as a nonper-
turbative formulation of superstring theory.

(IIB matrix model
N.Ishibashi, H. Kawai, Y.Kitazawa and A.Tsuchiya, hep-th/9612115.

For a review, hep-th/9908038

1 1 9 0 1_ 9
S — —2T7°N><N(_ Z [Ap,, AV] + _¢ Z I‘M[Au’ ¢])7
g 4 2 p=0

m,v=0
( where Z = /dAd¢e+S).
e A, and ¢ are N X N Hermitian matrices.

* A,: 10-dimensional vectors
* ): 10-dimensional Majorana-Weyl (i.e. 16-component)
spinors
e This model possesses SU(IN) gauge symmetry and
SO(9,1) Lorentz symmetry.

e N = 2 SUSY: This theory must contain spin-2 gravi-
tons if it contains massless particles.

* homogeneous : 6N A, = iel,yp, WM = %I‘“b[Aa, Aple.
* inhomogeneous : 55(2)Aa =0, 55(2)1/1 = &.

This gives a shift of the bosonic variables for
o =60 4 5@ 5@ = (6 —63®): (a,8=1,2)

(6@, 8y =0,
[6),6{714,, = —2i6°PeT,¢.




Can we describe the curved spacetime
by a large N reduced model?

Classical equation of motion of IIB matrix model:
[AY,[A., A)]] = 0.

This has only a flat noncommutative background as a
classical solution:

[AIM Ay] p— icp,y]-NxNo

— Some alteration of the action may be necessary in or-
der to surmount this difficulty.

[Example] IIB matrix model with a tachyonic mass term:

Y. Kimura, Prog. Theor. Phys. 106 (2001) 445, [hep-th/0103192].

1 1 0 0
g> \4
EOM: [Ayp, [Ag, Ap]] + 2X%A, = 0.

e SO(4) invariance and u(IN) gauge symmetry.
a, b runs over 1,2, 3,4 in the Euclidean space.

e Classical solution of compact curved spacetime:
* SO(3) fuzzy sphere [A;, A;| = i€ Ag
(iajak — 17273), Ay =0.

* Fuzzy torus



2 Massive supermatrix model

It is interesting to consider a similar problem in the su-
permatrix model.

osp(1]|32, R) super Lie algebra'

e M € osp(132,R) = "MG + GM = 0,
r’ o
where G = I

0 2

o M = (:Z—J 15 ) , where TmI® + % = 0 (m € sp(32)).

1 1
e Mm = 'u,AlI‘A1 + 21 uA1A2FA1A2 + UA1 5I‘Al"'A5, where

Ups = ﬁt'r(mI‘A)? UAa A, — _ﬁtr(m]‘-‘AlAz)7 UA,-As = —tr(mFAl"'A5)'

32
action of the massive supermatrix model'

We add a mass term to the pure cubic action:

S = Tr str (—3uM2—|—%M[M,M])}
L g

I 32
= Tr |—3u {(Z M,,QMQP) — MggQMQ?’?’}
L p=1

+giz {(ﬁ M, [Mq", MR”]> — Migs®[Mg", MRgg]H ’

{zm( r(m?) + 2idap) + - (my [mq"’,mﬂ]—Sizzp[mpq,w)}.

e Each component of the 33 X 33 supermatrices is pro-
moted to a large N hermitian matrix.

e 05p(1]32, R) symmetry and u(/N) gauge symmetry.



In order to see the correspondence of the fields with IIB
matrix model, we express the bosonic 32 X 32 matrices in
terms of the 10-dimensional indices.

(,UwVa"' 0717"'99911:10)'

W =my, A,=my, B,=myuy, Cuu, = My,
Hy .y = Mypyepstty Lpyoops = Mpgeopse

Then, the action is decomposed as

1
S = 96uTr <—W2 — A,A*4+B,B" + Cmyacmw _ ZHM'"MHM".M

1 i _
S M1 —
5!2“1'"“52 Tt 16¢¢>

+ 32¢Tr (—3C,, 4, [AM, AP?] 4+ 3C, 4, [B*, B*?] + 6W[A,,, B¥] 4+ C\, 1, [C"? s, CH2H1]

+£BM1 [Huz---us’ Zrke] — %Cmuz (4[H“191p2p3’ HH2Pp2ps] [Zulpl---pu ZHprbal)
+ (5!)26“1"'“10*1 (=W Zpu, 55 Zpgepiro] + 1044, [Hppsoopiss Zgeopno))
200
+ (5!)36“1".“1Oﬁ (5Hu1---#4 [Z#5#6#7px7 Z#s#smopx] + 10H,, ...p, [Husuemp? Hnsuwmp]
+6HPXN1H2[ M3 a5 PX ) HG IJ'IO]))
+ 8T (BUW, ]+ 9T {4, 0] + BT (B ] + T (Cpn ]

1 _ _
4—¢F‘“ “4ﬁ[H“1,_,N4, Q»b] + a¢ru1---us [Zul---us’ ¢]> .

e The rank-1 and rank-5 fields (in 11 dimensions) have a positive
mass, while the rank-2 fields are tachyonic.

A ApeAs AA,
FAl' =T 4,..4. 177" = +132x32, I'a,4, 172 = —132x302.
—— - g _ g _
no sum no sum no sum

® The rank-1 and rank-5 fields has a stable trivial commutative
classical solution:

W =A,=Hy .= Zyps = 0.

e For the rank-2 tachyonic fields B, C,, ., the trivial solution
B, = C,,,, = 0 is unstable.
= They may incorporate an interesting stable non-commutative
solution!



From now on, we set the fermions and the positive-mass bosonic
fields to zero:

1
S = 96uTr <BNB” + ECMMC’“W)
+ 32’1:TT' (3CM1N2 [B/“? BM2] + CN1N2 [C M3 CM3M1]) °

The equations of motion:
B, = —iu '[B",C,.),
Cuip, = _":N_l([Bul’ Buz] + [Culp’ Cuw])-

We integrate out the rank-2 fields (in 10 dimensions) C,,,,,, by solving
the latter equation of motions iteratively.

Cmuz = _'i,u'_l([Buw Buz] + [Cmpa Cuzp] ) Tt
—’_/
=(=ip=)?[[BuysBPI+[Cuix1 »CPX1][Bug s Bpl+[Crayxa ,Cp*?]
- ’\iu_l[Bl"'l’ BN2]J + i“_3[[BH1 ’ BP]’ [BN2’ BP]]

o(B2) with lvcommutator o(B*) with 3 ::ommutators
- ?iﬂ_5[[B[u1’ By, [[Buz]’ By, [B?, BX]]]
o(B%) with 5 commutators
+ ip" " [[[Buss Bxuls [Boy BX]], [[Buys By [B?, BX]]]
+ 23“ 7[[B (k19 Bp]’ [[Bm]’ B,|, [[B*, Bs], [B*, B]]]]
- ?zﬂ [[B[uv Bp]? [[Bp’ Bx]7 [[an]’ B,,], [BX, BU]]]]
o(B®) with 7;0mmutators
+ 9[[B[u1’ p]? [[an]’ Bx]7 [[BX, B,|, [[B”, Ba], [B?, B]]]]]
77 9[[B (k19 p]’ [[B?, By], [[B*, Bs], [[Bm]’ B.], [B?, B]]]]
i 9[[B[u1’ B, [[an]’ By, [[B?, B, [[BX, Ba], [B7, B°]]]]]
2ip 9[[B[u1’ p]? [[B?, Bx]7 [[an]’ B, [[BX, Ba], [B?, B*]|]]]
2ip 9[[[ (1 By, [Bp’ BX]], [[B?, By.), [[BH2]’ B.], [B**, B?]]]]
7 9[[[ (1o By, ], [B,, BX']], [[Buz]’ By, [[B*, Bs], [BX*, B7]]]]
— 2ip” 9[[B[u1’ Byl [[[Buz)s Boyls [Bxs B°]], [[B?, Bo,], [B*, B7*]]]] —I—O(p,_ll).(*)

o(B1) with 9vc0mmutat0rs

I
N

|
)

Then, the action reduces to
S = Tr(96uB,B" + 48, '[B,,, B,,][B*, B*]
+ (higher-order commutators of the order O(p~2**1) with k = 2,3,---)) .

We consider the classical solution of the equation of motion
B, = —ip~'[BY,C,,] with C,,,, substituted for (x).
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Fuzzy-sphere classical solution'

1. [50(3) X SO(3) x SO(3) fuzzy spheres]

This describes a space formed by the Cartesian prod-
uct of three fuzzy spheres.

. N?2—-1 .
[Bi, Bj] = ipreijrBe, B} + B} + B = p*r? y (4,4, k =1,2,3)
. N?2—1 . .
[Bil, B]I] = Z[JITGin/kIBkl, Bi + Bg + Bg = MZT’Z 1 ) ('L,,],, k, = 4:, 5, 6)
N2 -1

[Bi"7 lel] = ?:MTGi"j"k"Bk", B,? —|— Bg —|— Bg = HZT’Z
By, =0, [B,,B,] =0, (otherwise).

4 , ('I:",j", k" — 7, 8, 9)

(We consider the Cartesian product of three spheres instead of a single SO(3)
fuzzy sphere

[B;, B;] = ipre;p By (for ¢, 5,k =1,2,3), B, =0 (for p =0,4,5,---,9),
because the solution By = « -+ = By = 0 is trivially unstable. )
2. [50(9) fuzzy sphere]

Generally, the SO(2k + 1) fuzzy sphere (S?* fuzzy
sphere) is constructed by the n-fold symmetric ten-
sor product of

(2k 4+ 1)-dimensional gamma matrices:

. ur ; /
BgO(Zk—H) = B [(Fz(72k) 1L+ +(1R®--- 1R I‘I()Zk))]symo
puir?
B§O(Zk+1)B§O(2’“+1) = Tn(n + 2k) 1N, x Ny -

We should answer the following two questions about
this solution:

1. Is this solution not perturbed by the infinite tower of
the higher-order commutator?

2. Which solution is energetically favored?




{Effect of the higher-order commutators}

We start with the ansatz for the rank-2 fields ngo(zk“) for the
SO(2k + 1) fuzzy spheres:

G0 = i () B0,

Y

The equation of motion for ngo(z’“H) reduces to

Cg;)(zk—l_l) — _,i“—l([BgO(Zk—l—l), BqSO(2k+1)] 4 [CZ?TO(ZI@—I—I), Cgr0(2k+1)])

%Bﬁf(%“)(—f(r) + 1+ (2k — 1)r2f%(r)) = 0.

f(r) is determined as

1+ /1 —4(2k — 1)r2

Fe(r) = ok — 1)

U

The equation of motion for Bgo(zk+1) leads to

SO(2k+1 2 _
BSOCRD (1 — 2kr® f1 (7)) = 0.

E—1
V1 —4(2k —1)r2 = o
e 1 —2kr’f (r) =0 (i.e. Jy1—4(2k —1)r2 = -5+
has no solution (except for k = 1, in which this is identical to

1 — 2kr2f,(r) = 0).

o 1 —2kr’fy(r) =0 (i.e. \/1—4(2k — 1)r2 = 4571 )

does have a solution r = i

The existence of the solution »(> 0) indicates that the
radius of the fuzzy sphere is not much perturbed by the
infinite tower of the high-order commutators.



[Comparison of the classical energy}

e Trivial commutative solution By = --- = Bg = 0:
Ep,—0 = —SB,=0 =

e SO(3) X SO(3) x SO(3) fuzzy spheres (IN; = n + 1):

16

'so(3)2

= —12p°Ny(Ny — 1)(Ny + 1)
~ —O(p’n’) = —O(p’Ny).

Eso@py = —Ssois = — Tr(B,B")

e SO(9) fuzzy sphere:

5 3
Esow) = —Ssow) = —g! n(n 4 8) Ny
6
~ —O(p’n'?) = —O(u’NY),
where the size of the matrices 350(9) is

_ (D) +2)(n 320+ 9} + 520+ 6)(n+7)

Ny
302400

O (n'?).



3 Summary

e We have investigated a massive supermatrix model to
seek a curved-space classical solution.

e We have found the triple SO(3) x SO(3) x SO(3) and
the single SO(9) fuzzy-sphere solutions.

* These solutions are not perturbed by the infinite
tower of the higher-order commutators.

* We have compared the classical energy.

[Future problems}

e Other classical solutions such as SO(3) x SO(6) fuzzy
sphere, fuzzy torus ...

e Relation to the BMN matrix model
D. Berenstein, J. M. Maldacena and H. Nastase, [hep-th/0202021]

e Structure of the N/ = 2 supersymmetry.
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Properties of the fuzzy 2k-sphere|

The SO(2k + 1) fuzzy sphere (S?* fuzzy sphere) is con-
structed by the n-fold symmetric tensor product of
(2k 4+ 1)-dimensional gamma matrices:

) nr : '
Bp50(2k+1) _ 7[(111(02’») IR+ +(1®--Q1® I‘;E)Zk))]sym.

p runs over 1,2,.--,2k 4+ 1 in the (2k + 1)-dimensional Euclidean space.

The commutation and self-duality relation
SO(2k+1) __ SO(2k+1 SO(2k+1)7).
(qu ( ) — [Bp ( )an ( )]).

4 . h
7

O Bgo(zk+1)350(2k+1) _ n(n + 2k)1n, x N,

ur
Q BSORkHN) gSORkt) —(5,)'8kn(n + 2k),
& [BSOCk+Y BSORKHD] — 2p2(_g, BSORKHD | g BSOCkHIY1 G

SO(2k+1 SO(2k+1
& [BSO(Zk:—l—l) B2 ( )] — 2 2(5qu ( )+5 BqSSO(Zk—I—l)

SO(2k+1
6psB ( ) 6th580(2k+1))7

2k—1

SO(2k+1) pSO(2k+1 SO(2k+1 ur SO(2k+1

<> epl"'P2k+1BP1 ( )sz ( ) szk( . <—> kaka—}(—l )
my = 2¢, my = 8(n +2), mz = —48i(n + 2)(n + 4),

my = —384(n + 2)(n + 4)(n + 6).

- J

For k = 1, this definition is identical to the SO(3) Lie algebra:

1. This is effectively a matrix acting on the symmetrized N = (n + 1)-
dimensional irreducible representation of so(3) Lie algebra, not on the original
2™-dimensional space.

2. The radius of the fuzzy sphere is (from (Q))
BSO(3)BSO(3) = En(n+2) = (pr)? N L where N24_1 is the Casimir
of s0(3).

3. I‘z@) are identical to the Pauli matrices o;.

4. Self-duality condition (<>) is triviaIIy identical to the commutation relation
[BSOB) BSOG)
j

(2

11



Computation of ms, m3 and m4I

In this appendix, we give the derivation of the coefficients my in the self-duality relation for
the SO(2k + 1) fuzzy sphere. In this appendix, we define the 2¥ x 2*¥ gamma matrices in the
2k-dimensional Euclidean space FI(,%) by the following recursive relation:

—i(2k) -
[(2k+2) _ FE)%) ® oy = ( 0 il > , Féikj:f) Ly @ 0y = < 0 Lok ok > ,

p i {2k 0 Lok o 0
(2k+2) o - 12k ok 0
Loris’ = Lokyor ® 03 = ( OX T > ; (1)
where the index p runs over p = 1,2,---,2k + 1. The 2-dimensional gamma matrices are

identical to the Pauli matrices: I\ = 0;. Under this notation, we obtain

7

010y = iog, TYTYTETEY =18, 1T -1 = i, TPy ... 1 = 1.
(2)
It is trivial that m; = 2i for the SO(3) fuzzy sphere. Then, we start with the coefficient ms.

In this appendix, we set & = 1 and omit "gym”, which indicates that the tensor product is
restricted to the fully symmetric subspace.

3.1 Computation of my

We first perform the computation of my for the SO(5) fuzzy sphere. We frequently utilize the
following identity for the symmetric tensor product:

Z(Uz' ® 0i) = (Laxa ® 1ay2). (3)

i=1
Now, we consider the case in which n = 2 for brevity; i.e. the SO(5) fuzzy sphere is described
by the 2-fold symmetric tensor products as

350(5) — [(F§)4) ® Laxa) + (Lixa ® F§)4))]‘ (4)
Then, the left-hand side is

SO(5) RSO(5) RSO(5) RSO(5
€pr-pas By, ( )Bm ( )Bp3 ( )Bp4 (%)
= epropus[ (5 © Lasa) + (Lixa @ T3 ) + 2050, @ TS )], (5)

We do not lose any generality if we set p; = 5, and the indices py,---,ps run over 1,2,3,4. The
first two terms give 4! = 24 of (I'j934 @ 14xa) + (1axs @ ['1234), to constitute 243590(5). On the
other hand, the third term is computed as

4 4 4 4
26p1-pus (T, © Thi,) = deie () © T) + (T @ T7)
4 4 4 4

= _8[(F](€4)5 ® Fl(s4)) + (Fl(c4) ® Fl(g4)5)]

= —8[(ox ® (—1l2x2)) ® (0% ® (—io3)) + (0% @ (—i03)) ® (04 © (—il2x2))]

= 8[(12x2 ® 03) ® (1ax2 ® Laxa) + (lax2 ® 1ax2) ® (Laxe ® 03)] = 8350(5)-

(6)

By the same token, this kind of contribution makes 8(n — 1)350(5) for any n. Altogether, we
have my = 8(n + 2).

12



3.2 Computation of mg

The computation of mg for the SO(7) fuzzy sphere goes in the similar way. In this computation,
we utilize the formulae
5

5
SOV OIY) = (Lia @ Laxa), S (0L @ T1) = —4(Laxs ® Lasa). (7)

=1 I ,lo=1

Now, we set p; = 7 without loss of generality, and consider the 3-fold tensor product. The
left-hand side is now

epl...p67BI‘?O(7)BSO(7) .. .BSO(7)
€127 { (T ps ® Toxs @ Tsxs) + (Laxs @ T, © Lgxs) + (Lsus @ Lgus @ TS )}

P1-Pe P1-Pe
(8)
+3{( I(fi) 2 ® F@,ﬁ ® 1gxg) + (5 other permutations of this kind)} (9)
+6(T3, @ Th, ® T, (10)

e We first consider the contribution of (8). Since there are 6! = 720 ways to contract the
indices py, - - -, pg, this gives

_720i[(rgﬁ) ® 1gxs @ 1gxs) + (Lsxs ® F(76) ® 1gxg) + (1sxs @ 1gxs ® F;ﬁ))] = —7202’B‘790(7).
e We then go on to the contribution of (9):
epr-p67(T)py @ TE) @ Lgys)
= [Ty O TUY © L) + 2T, @ TG © )

l4l5 ll l4

= (4') ‘[(F§4l)57 ® F§4l)5 ® 18><8) + Q(Fl(5f)57 ® Fl(5()5 ® 18><8)]

= (i, ® 03) ® (Tf), ® Loxa) ® Lsxs) = 2((T7) ® Loxe) ® (I} © 03) @ Lsxs)]
= —(41)i[4((14xs ® 03) ® Lgxg ® Lgxs) + 2(1sxs ® (1axa ® 03) ® 1gxs)],
where the indices [j,ly,--- run over 1,2,---,5 and we have utilized the formulae (7).

Summing up all 6 permutations, we obtain —8642'350(7). When we extend this argument

for the general n-fold tensor product, the result is —432i(n — l)B}gO(?).

e Lastly, we investigate the terms (10):
66p,.po7 (T T T

p1p2 Pp3pa P5P6)

= 12¢,.. lsm[(rglg ® F§324 ® Fl(5g) + (2 other permutations)]
= —12(20i[(T}, 67 @ Thy), ® Tiga) + (perm.)]
= 24i[((T1,1, ® 1axo) ® (T, ® 1ax2) ® (T1Y ® 03)) + (perm.)]
= 24i[(T T ® 150) @ (T, ® 12X2) ® (MY ® 1a0)

F2(T8 @ 15000) @ (T — 6500, 1s) © 1932) ® (T8 @ 03)) + (perm.)]
= —96i[(1sxs @ 1gxs ® (Lyxs ® 03)) + (1sxs @ (laxs ® 03) @ 1gxg)

+((1axa ® 03) ® Lgxs ® 1gys)| = —9675350(7)-

For the general n-fold symmetric tensor product, we obtain —48i(n — 1)(n — 2)3%90(7).

We sum up all the contribution of (8), (9) and (10) to obtain ms = —48i(n + 2)(n + 4).
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3.3 Computation of my

We next go on to the coefficient my for the SO(9) fuzzy sphere. We repeat the same procedure,
but the Computation is rather complicated. We exploit the following formulae here:
(rf° ) = (Loxs ® Lsxs), (
(T} 1112 1112) —6(1sxs ® Lgxs), (
( z1z2z3 112213) = —18(1sxs ® Lsxs), (13
( (
Ty (

lezz ® F 'or) ) = —6(1sxs ® Llgys ® 1gxsg),

l1l2l3

l1l2 ® Fz3z4 ® Fz(l) 1) = 24(1gxs ® Lgxs ® lgys), 15
(Fgll)Z ® F§3l)4 ® Fl(5l)6 ® Fl(l) l6) — _48(18><8 ® 18><8 ® 18><8 ® 18)(8)- (16

We set pg = 9, and the indices py,po, -+ and [y, ls, -+ - respectively run over 1,2,---,8 and
1,2,---,7. We consider the 4-fold tensor product

€p1---ps9BSO( )BSO( ). ..350(9)

= €p1---p89[((F§;1) 25 @ Liox16 @ Lisx16 ® Lisxis) ++ + (Ligx16 @ ligx16 ® ligxie @ Fél) 2s))
(17)
((I‘p1 e ® m)ps ® 1isx16 ® ligx16) + (11 other permutations)) (18)
+6((r® p1 p4 p5) s @ 116316 ® Ligx16) + (5 other permuations)) (19)
+12(0F , @T'® @T®)  ® 1igxe) + (11 other permutations)) (20)
+24(T (3, ® T3, ® T, ® TE)] (21)

(17) trivially gives —(8!)By .

e The contribution of (18) is computed as follows:

eprped(T) L @T®) @ Ligxis @ Ligxis)

= 6(5!)(Fl(6279 @TE) @ 1ig16 ® ligxi6) + 2(6!)(F§78§9 ® F§f§ ® ligxi1s @ lisxie)

lel7

= 6(5!)((F( ) ® 03) ® (F(G) ® lox2) ® ligxi6 @ lisxie)

l6l7 l6l7
—2(6!)((F§7) ® laxs) ® (F§f) ® 03) ® Ligx16 @ Ligx1s)
= —(6))[6((1sxs ® 03) ® Ligx16 ® Lisx1s ® ligxie)
+2(116x16 @ (1sxs @ 03) @ Ligxis @ lisxie)]-

We sum up all 12 permutations to obtain —69120B5°® (=23040(n — 1)B;°” for the
general n-fold tensor product).

e We go on to the contribution of (19):

oo (PO @ T

s @ 116316 ® Ligx16)
( 8) (8

8
= _4(4!)[(Fl(5l)6l789 ® Fl5l)6l78 ® 116)(16 ® 116)(16) (Fl(5l6l78 ® Flsl)6l789 ® 116)(16 ® 116><16)]
= 4(4!)[((F§51)617 ® 1ayx2) ® (F( ) ® 03) ® Ligx16 ® Ligx16)

lslel7

+((F§51)617 ®03) ® (ngz)ﬁh ® 1ox2) @ lisxis ® Ligxis)]

= —T72(4)[((1sxs ® 03) @ Ligx16 @ lisxic @ liexis)
+(116x16 @ (1sxs ® 03) @ Ligxis ® lisxie)]-

14



Therefore when we sum all the permutations, (19) gives —31104B;°Y (—10368(n —
1)B;°? for the general n).

e We next investigate the terms (20). Together with all the permutations, this gives
—41472B5°® (—6912(n — 1)(n — 2)350(9) for any n) due to the following considera-
tions:

epl...psg(Fz(,l) 22 ® I'® @I'® @ ligxis)

P5P6 p7ps
= (4)[-((T,, ® 03) ® (T}y), ® 1axz) ® (Tf5), ® Las2) @ Lugre)
+2((Fz(5z)617 ® loxs) ® (Fz(fz)a ® lax2) ® (Fz(7) ® 03) @ Ligxi6)
+2((00 1, ® 1ay2) ® (Y ® 03) @ (D[S, ® Laxa) ® Ligwro)]

= —(41)[24((1sxs ® 03) @ lisx16 @ lisxis @ liexis)
+12(116x16 @ ((1sxs @ 03) @ Ligxis + Ligxis @ (Lgxs ® 03)) ® Ligxis)],

where we have used the formulae (14) and (15).

e Lastly, (21) gives —2304B3° (=384(n — 1)(n — 2)(n — 3)B5° for any n):

24€p,.p09(Thp, ® ), O TS, ® Fé%as)
= 48[(T), ® 1ax2) @ (T, @ Lo2) ® (T, @ 13,2) ® (Tf1);, ® 3)
F(T) @ 19x0) @ (T, @ 1950) © (T, @ 03) @ (11, @ 15)
+(Tio ® 1awa) ® (T, ® 03) ® (T, ® 1240) ® (F?m © Layo)
H(IP . ©03) © (), © Taxa) @ (TN, ® 1axa) ® (T, @ 1ays)] = —2304B8; .

Here, we have exploited the formula (16).

When we sum up the contribution of (17) ~ (21), we obtain m4 = —384(n + 2)(n + 4)(n + 6).
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