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1 Introduction

Curved-space classical solution of the matrix model'

The curved-space background of a matrix model is an
important issue, if a matrix model is to be an eligible
framework to describe the gravitational interaction.

The IIB matrix model has only a flat background, and
we want to build a matrix model which describes the
curved-space background more manifestly.

We realize such an action by the addition of
to the IIB matrix model.

In this talk, we focus on the following action:
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e A, is the 3-dimensional bosonic vector.
Each component is an /N X IN hermitian matrix.

e This model is defined in

This model incorporates and



The classical equation of motion
[A;,[Aiy Aj]] + ta€jr[Ar, Ai] =0
incorporates an classical solution.
A; = alL;,

where L; is the N-dimensional irreducible representation
of the SU(2) Lie algebra:

[Li, Lj] = ’I:G,;jkLk.
The radius of the fuzzy-sphere solution is given by the
Casimir of the SU(2) Lie algebra:

A2 A2 A2_ N2_1
1+ 2+ 3 — & 4 ]—NXN°

The quantum stability has been investigated perturba-
tively through the one(multi)-loop computation:

S. Iso, Y. Kimura, K. Tanaka and K. Wakatsuki hep-th/0101102.
T. Imai, Y. Kitazawa, Y. Takayama and D. Tomino hep-th/0303120, 0307007.

In this work, we investigate the quantum stability of
the fuzzy-sphere solution through the
Monte-Carlo simulation.



2 Numerical simulation of the matrix model with the
Chern-Simons term

The S? fuzzy-sphere solution is

We analyzed the following observables in verifying the
stability of the fuzzy sphere.

e (TrA?): The spacetime extent.

e The histogram of the eigenvalues of the Casimir

AT+ A3+ AS.

When we start the Monte-Carlo simulation from the
fuzzy-sphere solution A; = aL;, the eigenvalues are peaked
at the radius-square at the outset:
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The behavior of the eigenvalue histogram indicates the
stability of the fuzzy sphere solution.

In the following we perform a simulation for N = 10
and o« = 1.0, 2.0, 3.0.



The behavior of the spacetime extent'

The spacetime extent ~(T'rA?) stays near the analytical
value of the radius.
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The analytical value of the fuzzy-sphere radius is (for N = 10)
given by
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The eigenvalues of the Casimir concentrates in the vicin-
ity of the original sphere.



The histogram of the eigenvalues of the Casimir'

The following histograms indicate that the eigenvalues
constitute the sphere-form shell.

The eigenvalues are distributed

the analytical radius-square.
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The histogram of N=10, (alpha)=2.0
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The histogram for N=10, (alpha)=3.0
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3 Conclusion

In this work, we have investigated the quantum stability
of the S? fuzzy-sphere solution of the matrix model (with
only the bosonic part).

We have found that the S? fuzzy-sphere solution is sta-
ble under the quantum effect.

e The spacetime extent %(TTA2) stays near the analyt-
ical radius-square of the fuzzy sphere.

e The eigenvalues constitute the sphere-form shell.

e Analysis of the supersymmetric matrix model.

e Extension to the higher-dimensional fuzzy-sphere so-
lution.
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The matrix model with the higher-dimensional Chern-
Simons term

N
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incorporates the solution of the higher-dimensional

fuzzy-sphere solution.

e The investigation of a < o(\/%) region, in which the
classical picture is conjectured to break down.



