Perturbative dynamics of fuzzy spheres at large N (hep-th/0410263)

Takehiro Azuma

High-energy Accelerator Research Organization (KEK)

JPS meeting 2005 at Tokyo University of Science Mar. 27th 2005, 11:30 \sim 11:45

Contents

1	Introduction	2
	The model and its classical solution	3
	All order calculation from one-loop effective action	6
4	Conclusion	10

1 Introduction

Matrix models on a homogeneous space

Motivations of fuzzy manifold studies:

- Relation between the non-commutative field theory and the superstring.
- Novel regularization scheme alternative to lattice regularization.
- Prototype of the curved-space background in the large-N reduced models.

Matrix models on a homogeneous space G/H:

$$G$$
= (a Lie group), H = (a closed subgroup of G).
 $S^2 = SU(2)/U(1), S^2 \times S^2, S^4 = SO(5)/U(2), CP^2 = SU(3)/U(2), \cdots$

These fuzzy manifolds are compact, and thus realized by finite matrices.

The Chern-Simons term is added to accommodate the classical solution of the fuzzy manifolds.

2 The model and its classical solution

3d Yang-Mills-Chern-Simons (YMCS) model

 \Rightarrow a toy model with fuzzy sphere solutions:

S. Iso, Y. Kimura, K. Tanaka and K. Wakatsuki, hep-th/0101102.

$$S[A] = N {
m tr} \, \left(-rac{1}{4} [A_\mu,A_
u]^2 + rac{2ilpha}{3} \epsilon_{\mu
u
ho} A_\mu A_
u A_
ho
ight).$$

- Defined in the 3-dimensional Euclidean space $(\mu, \nu, \rho = 1, 2, 3)$.
- Convergence of the path integral P. Austing and J. F. Wheater, hep-th/0310170.
- Classical equation of motion: $[A_{\nu}, [A_{\mu}, A_{\nu}]] i\alpha\epsilon_{\mu\nu\rho}[A_{\nu}, A_{\rho}] = 0.$
- fuzzy S² classical solutions: $A_{\mu} = X_{\mu} = \alpha L_{\mu}$, (where $[L_{\mu}, L_{\nu}] = i\epsilon_{\mu\nu\rho}L_{\rho}$). $L_{\mu} = (N \times N \text{ representation of the SU(2) Lie algebra}).$

Casimir operator: $Q = A_1^2 + A_2^2 + A_3^2 = R^2 1_N$.

 $R = \text{(radius of the fuzzy sphere)} = \frac{\alpha}{2} \sqrt{N^2 - 1}$.

First-order phase transition

Monte Carlo simulation launched from fuzzy sphere classical solution:

Critical point at $\alpha_{\rm cr} \simeq \frac{2.1}{\sqrt{N}}$.

• $\alpha < \alpha_{\rm cr}$: Yang-Mills phase Strong quantum effects.

behavior like the $\alpha = 0$ case.

T. Hotta, J. Nishimura and A. Tsuchiya, hep-th/9811220,

$$\langle rac{S}{N^2}
angle \simeq \mathrm{O}(1), \; \langle rac{1}{N} \mathrm{tr} \, A_{\mu}^2
angle \simeq \mathrm{O}(1).$$

• $\alpha > \alpha_{\rm cr}$: fuzzy sphere phase. Fuzzy sphere configuration is stable.

Yang-Mills phase

Fuzzy sphere phase

Phase transition from the one-loop effective action

The effective action Γ is saturated at the one-loop level at large N.

T. Imai, Y. Kitazawa, Y. Takayama and D. Tomino, hep-th/0307007.

Effective action at one-loop around

$$A_{\mu} = tX_{\mu} \text{ (where } \tilde{\alpha} = \alpha \sqrt{N} \text{)}.$$

$$rac{\Gamma_{
m 1-loop}}{N^2} \simeq ilde{lpha}^4 \left(rac{t^4}{8} - rac{t^3}{6}
ight) + \log t.$$

The local minimum disappears at

$$ilde{lpha} < ilde{lpha}_{
m cr} = (rac{8}{3})^{rac{3}{4}} \simeq 2.086 \cdots$$

Consistent with the Monte Carlo simulation.

3 All order calculation from one-loop effective action

The free energy W can be obtained by the extremum of the effective action.

Expansion around $A_{\mu} = \beta L_{\mu}$: $(\tilde{\beta} = \beta \sqrt{N})$

$$\lim_{N o\infty}rac{1}{N^2}\Gamma(ilde{eta})=\left(rac{ ilde{eta}^4}{8}-rac{1}{6} ilde{lpha} ilde{eta}^3
ight)+\log ilde{eta}.$$

Local minimum for $\tilde{\alpha} > \tilde{\alpha}_{\rm cr} = \sqrt[4]{\frac{512}{27}}$:

$$egin{aligned} ilde{eta} &= f(ilde{lpha}) = rac{ ilde{lpha}}{4} \left(1 + \sqrt{1+\delta} + \sqrt{2-\delta + rac{2}{\sqrt{1+\delta}}}
ight) \ &= ilde{lpha} \left(1 - rac{2}{ ilde{lpha}^4} - rac{12}{ ilde{lpha}^8} - rac{120}{ ilde{lpha}^{12}} - rac{1456}{ ilde{lpha}^{16}} - \cdots
ight), ext{ where} \ \delta &= 4 ilde{lpha}^{-rac{4}{3}} \left[\left(1 + \sqrt{1 - rac{512}{27 ilde{lpha}^4}}
ight)^rac{1}{3} + \left(1 - \sqrt{1 - rac{512}{27 ilde{lpha}^4}}
ight)^rac{1}{3}
ight]. \end{aligned}$$

Free energy and observables:

$$\begin{split} \lim_{N \to \infty} \frac{1}{N^2} W &= \left(\frac{1}{8} f(\tilde{\alpha})^4 - \frac{1}{6} \tilde{\alpha} f(\tilde{\alpha})^3 \right) + \log f(\tilde{\alpha}) \\ &= -\frac{\tilde{\alpha}^4}{24} + \log \tilde{\alpha} - \frac{1}{\tilde{\alpha}^4} - \frac{14}{3\tilde{\alpha}^8} - \frac{110}{3\tilde{\alpha}^{12}} - \frac{364}{\tilde{\alpha}^{16}} - \cdots, \\ \lim_{N \to \infty} \frac{1}{N^2} \langle S \rangle &= \frac{3}{4} - \frac{1}{24} \tilde{\alpha} f(\tilde{\alpha})^3 \\ &= -\frac{\tilde{\alpha}^4}{24} + 1 \qquad \qquad \underbrace{+\frac{1}{\tilde{\alpha}^4}} \qquad + \frac{28}{3\tilde{\alpha}^8} + \frac{110}{\tilde{\alpha}^{12}} + \frac{1456}{\tilde{\alpha}^{16}} + \cdots. \end{split}$$

agrees with two-loop calculation!

All order calculation of generic observables \mathcal{O}

Consider the action $S_{\epsilon} = S + \epsilon \mathcal{O}$.

Corresponding free energy:

$$egin{aligned} W_\epsilon &=& -\log\left(\int d ilde{A}e^{-(S+\epsilon\mathcal{O})}
ight) = -\log\left(\int d ilde{A}e^{-S}
ight) + \epsilonrac{\int d ilde{A}\mathcal{O}e^{-S}}{\int d ilde{A}e^{-S}} + \mathrm{O}(\epsilon^2) \ &=& W + \epsilon\langle\mathcal{O}
angle + \mathrm{O}(\epsilon^2). \end{aligned}$$

One-loop effective action (take only 1PI diagrams into account)

$$\Gamma_{\epsilon}(\tilde{\beta}) = \Gamma(\tilde{\beta}) + \epsilon \Gamma_1(\tilde{\beta}) + \mathrm{O}(\epsilon^2).$$

Its saddle point:

$$rac{\partial}{\partial ilde{eta}} \Gamma_{\epsilon}(ilde{eta}) = 0, \;\; \Rightarrow ilde{eta} = f(ilde{lpha}) + \epsilon g(ilde{lpha}) + \mathrm{O}(\epsilon^2).$$

Plugging this solution, we obtain the free energy as

$$W_\epsilon = \Gamma_\epsilon(f(ildelpha) + \epsilon g(ildelpha) + \cdots) = \Gamma(f(ildelpha)) + \epsilon \left(\Gamma_1(f(ildelpha)) + g(ildelpha)\underbrace{(rac{\partial \Gamma}{\partial ildeeta})|_{ ildeeta = f(ildelpha)}}_{=0}
ight) + \mathrm{O}(\epsilon^2).$$

We thus obtain $\langle O \rangle = \Gamma_1(f(\tilde{\alpha}))$.

All order calculation of the spacetime content:

$$\lim_{N o\infty}rac{1}{N}\langlerac{1}{N}{
m tr}\,A_{\mu}^2
angle=rac{ ilde{lpha}^2}{4}$$
 $-rac{1}{ ilde{lpha}^2}$ one-loop

The one-loop effect comes from tadpole diagrams.

$$rac{1}{N}\langlerac{1}{N}\mathrm{tr}\,A^2
angle = rac{1}{4}f(ilde{lpha})^2 = rac{1}{4} ilde{lpha}^2 - rac{1}{ ilde{lpha}^2} - rac{5}{ ilde{lpha}^6} - rac{48}{ ilde{lpha}^{10}} - rac{572}{ ilde{lpha}^{14}} - \cdots.$$

Other observables:

$$\lim_{N o \infty} rac{1}{\sqrt{N}} \langle M
angle \ = \ -rac{1}{6} f(ilde{lpha})^3 = -rac{1}{6} ilde{lpha}^3 + rac{1}{ ilde{lpha}} + rac{4}{ ilde{lpha}^5} + rac{112}{3 ilde{lpha}^9} + rac{440}{ ilde{lpha}^{13}} + \cdots, \ \lim_{N o \infty} \left\langle rac{1}{N} {
m tr} \, (F_{\mu
u})^2
ight
angle \ = \ 3 + rac{1}{2} ilde{lpha} f(ilde{lpha})^3 = rac{1}{2} ilde{lpha}^4 - rac{12}{ ilde{lpha}^4} - rac{112}{ ilde{lpha}^8} - rac{1320}{ ilde{lpha}^{12}} - \cdots \ .$$

4 Conclusion

- In this talk, we have scrutinized the perturbative dynamics of the 3d YMCS model.
- We have obtained the all order results for generic observables at large N.

Future direction

• Extension of this technique to the 4-dimensional fuzzy manifolds:

```
fuzzy CP<sup>2</sup> (hep-th/0405277), fuzzy S<sup>2</sup> × S<sup>2</sup> (hep-th/0503***).
```