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1 Introduction

Large-N reduced models are the most powerful candi-
dates for the constructive definition of superstring theory.

IIB matrix model

N.Ishibashi, H.Kawai, Y.Kitazawa and A.Tsuchiya, hep-th/9612115.

1 1 9 o 1 _ 9
S = —TT’NXN ( Z [Auy AI/] _I_ 5'¢ ZO I‘M[A/JJ ¢]) ’
l’l':

( where Z = / dAdype™d).

m,v=0

e Dimensional reduction of A/ = 1 10-dimensional SYM
theory to 0 dimension.
A, and 9 are N X N Hermitian matrices.

* A,: 10-dimensional vectors

* ¢): 10-dimensional Majorana-Weyl (i.e. 16-component)
spinors

e Matrix regularization of the Schild form of the Green-
Schwarz action of the type I1IB superstring theory.

e SU(N) gauge symmetry and SO(9,1) Lorentz sym-
metry (SO(9,1) x U(N)).

e The N X N matrices describe the many-body system.

e No free parameter: A, — g%Au, P — g%v,b.



e N = 2 SUSY: This theory must contain spin-2 gravi-
tons if it contains massless particles.

* homogeneous : VA, = iel 1, Wy = %I““’[A,,,, A le.
* inhomogeneous : 5§2)Au = 0, 5§2)'¢ = ¢.
* We obtain the following commutation relations:
(1) [6%,814, = [8), 6014 = o,
2) o2 2) (2
(2) [5,), 66 1Au = (8, , 66,1 = 0,

1 2

(3) (61,614, = —ieT &, [6D,8] = 0.

This gives a shift of the bosonic variables for
o) =M 4§, §©@ = z’((s(l) — 5(2)): (a, B = 1,2)

[Séa)’ Séﬂ)]'l,b = 0,
6, 6074, = —2i5°%eT .¢.

— Therefore, the eigenvalues of the bosonic large-IN
matrices A, represent the spacetime coordinates.



If the large-IN reduced models are to be an authentic
framework to unify all interactions in nature - - -,

U

[Q] How can we express the gravitational interaction
more manifestly in terms of a large-IN reduced model?

1. IIB matrix model itself is an eligible framework to
describe the gravity.

® | General coordinate invariance
S. Iso, H.Kawai. Int. J. Mod. Phys. A 15, 651 (2000) hep-th/9903217
The general coordinate invariance is interpreted as the
permutation Sy invariance of the eigenvalues of the
large N matrices.

zt — z°® for o € Sy,

U

x — £(x) such that £(z?) = 7O,



Graviton and dilaton exchange
N.Ishibashi, H.Kawai, Y.Kitazawa and A.Tsuchiya, hep-th/9612115

The computation of the one-loop effective Lagrangian
reveals the graviton and dilaton exchange in 1IB ma-

trix model.
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dilaton exchange

where fﬁ’m = i[al(}g), ab?)].




[z. A matrix model must incorporate a local Lorentz
invariance J

We need to enlarge the symmetry of the model.
T. Azuma and H. Kawai, Phys. Lett B538, 393 (2002) hep-th/0204078

Symmetry of IIB matrix model is SO(9,1) X U(N):
so(9,1) Lorentz symmetry and u(IN) gauge symmetry are
decoupled.

exp(f®1+1Qu) =e* ®e", where £ € 50(9,1), u € u(N).

In IIB matrix model, the eigenvalues of the bosonic
matrices A, are regarded as the spacetime coordinate.

If we are to formulate a matrix model with local
Lorentz invariance, the parameters of the Lorentz trans-
formation £ must be promoted to (nontrivial) w(/N) ma-
trices.

so(9,1) Lorentz symmetry and u(IN) gauge sym-
metry must be unified; i.e. the symmetry is the tensor
product of the Lie algebra so(9,1)®u(IN), rather than
SO(9,1) X U(N).

A, B = [Lie algebras whose bases are {a;} and {b;}, respectively.]

e A ® B: The space spanned by the basis a; ® b;. This is not
necessarily a closed Lie algebra.

e ARB : The smallest Lie algebra that includes A ® B as a subset.

The gauge group must close with respect to the commutator

a® A,b® B] = _ (la,] ® {A, B} + {a,} ® [4, B]).



3. A matrix model must incorporate a classical solu-
tion of a curved space. J

Classical equation of motion of IIB matrix model:
[AY,[A,, A)]] = 0.

This has only a flat non-commutative background as a
classical solution.

[A“, A,,] = icuulNXN°

In order to surmount this difficulty, we alter a model
so that it incorporates a curved-space classical solution
ab initio.

[Example| IIB matrix model with a tachyonic mass term:
Y. Kimura, Prog. Theor. Phys. 106 (2001) 445, [hep-th/0103192].
1 1 2 2
S=—Tr (Z[Aa, A2+ A AaAa> ,

g
EOM: [Ay, [Aq, Ap]] + 2A%A, = 0.

e SO(4) x U(N) symmetry.
a,b runs over 1,2, 3,4 in the Euclidean space.

e Classical solutions of compact curved spacetime:

* SO(3) fuzzy sphere:
[Ai, Aj] = ’I:)\GijkAk (’I:,j, k = 1, 2, 3), A4 = 0.

* two-dimensional fuzzy torus:

A= (U+UY, A= —(U—-U", A3= - (V4+VH, Ay= (Vv —Vh,
2 27 2 27
1 0 1
w 10
U = w? , V= 1 0 ,
whN-1 1 0
27

w=e¢e"Y 6= N’ UV =eVU, A2 =7r%(1 — cos9).



2 Massive supermatrix model

We consider the 3rd way in terms of an osp(1,32|R) su-
permatrix model.

osp(1|32, R) super Lie algebral

osp(1]32, R): first mentioned with the relation to the 11-
dimensional supergravity.

E. Cremmer, B. Julia, J. Scherk, Phys.Lett.B76:409-412,1978.

— This has attracted a new attention as the unified super
Lie algebra for the M-theory.

E. Bergshoeff, A. Van Proeyen, hep-th/0003261

The matrix model based on osp(1|32, R) is a natural
extension to I1IB matrix model.

L. Smolin, hep-th/0002009
L. Smolin, hep-th/0006137
T. Azuma, S. Iso, H. Kawai and Y. Ohwashi, hep-th/0102168

M. Bagnoud, L, Carlevaro and A. Bilal, hep-th/0201183

e Extra fields:
The 32 X 32 bosonic part of osp(1|32, R) has the com-
ponents of rank-1,2,5 of the 11-dimensional gamma
matrices Uy, Un ays Loy o
— The rank-1 components u, can be identified with
the bosonic vector of 1IB matrix model A,.



e Realization of the spin connection:
The complexification w (1|16, 16) incorporates the rank-
3 components.
— This may be identified with the spin connection in
the supergravity theory.
— We can elucidate the inclusion of the gravity more
manifestly.

e Relation of the supersymmetry:
osp(1|32, R) cubic supermatrix model (without mass

term) nearly has the double structure of the 10-dimensional
N = 2 SUSY of IIB matrix model.

* TIB matrix model: 16-component fermion

* 0sp(1|32, R) model: 32-component fermion

twice as many fermions!!

The SUSY transformation of the rank-1 component
u, resembles that of the vector field A, of IIB matrix
model.



M € osp(1]|32, R) defryra + GM = 0, where

r’ o
o= (12).

_[m ¥ T 0 0, — O
M_(’MZ O),where mI” 4+ I m = 0;
i.,e. m € sp(32),

(Proof) We start with the general form M = ( .

¢
oo s (1 ) (5] (5

m
Ty v 0 2 0 2 (zq_ﬁ 'v)
B TmI‘O—I—I‘O’m, TQ_S+FO¢
_( Ty — ¢ 23v )

3
SERSS

Therefore, we obtain v = 0, ¥ = ¢ and TmI'’ +TI'"m = 0.

We next investigate what ranks of m survive. Since
m € sp(32), it follows that m = —(T'%) "1 (Tm)I° = +T°(Tm)T".
FO(TFAl---Ak)FO — (_1)k—1(F0(TFAk)F0) o (FO(TFAl)FO)
_ (_1)k_1FAkAk—1"'A1 — (_1)’{:—1(_1)@:[114144244]‘,
(_1) (k+2)2(k—1) I‘A1A2"'Ak

— e A (k=1,2,5)
| =44 (B =0,3,4)

10



Action of the massive supermatrix model'

We add a mass term to the pure cubic action:

S = Tr |str (—:mM2 + MM, M])]
_ g

I 32
= Tr |—3u {(2 M,,QMQP) — MggQMQ?’?’}
L p=1

) 32
+§ { Z MpQ[MQR7 MRP]> - M33Q[MQR7 MRgg]}} ’
=1

Tr [3u(—tr(m2) + 2ipp) + % (mp[mg", m,P] — 3ipP[m,Y, zpq])] .

e Each component of the 33 X 33 supermatrices is pro-
moted to a large N hermitian matrix.

e 05p(1]32, R) symmetry and u(IN) gauge symmetry are
decoupled (i.e. Osp(1|32, R) X U(N) symmetry).

*M —> M+ [M,(SQ® 1yxn)] for S € osp(1|32, R),
* M — M —+ [M, (133><33 X U)] for U € U(N)

11



In order to see the correspondence of the fields with IIB
matrix model, we express the bosonic 32 X 32 matrices in
terms of the 10-dimensional indices.

(Ul?’/a"’ =0,1,---,9, f = 10)-

W =wuy, Ay=uy, By=uuy Cupu, = Upp,

Hl"’l”'/”"l — u/”’l“’l"’étﬁ’ Zl"’l”'l‘l"s — u/”’l“’/”’s'

Then, the action is decomposed as

1
S = 96uTr <—W2 — A,A*4+B,B" + CMMCMM _ ZH#P--MH”IMM

1 i _
S M1 —
5!2‘“"'“52 " 161!;1/))

+ 32¢Tr (—3C,, 4, [AM, AP?] 4+ 3C, 4, [B*, B¥*?] + 6W[A,,, B¥] 4+ C\, 4, [C"? s, CH2H1]

+%B#1 [Huz---us’ Zrke] — %Cmuz (4[H”1p1p2ps’ HH2P1p2p8] [Zulpl---pu ZHprpal)
+ (5!)26“1'"“1011 (=W Zpu, 53 Zpgepro] + 1044, [Hppsooopiss Zpgeopno))
200
+ (5!)3€u1---u1oﬁ (5Hu1---#4 [Z;tsusmva Zns#gumpx] + 10H,,, ..., [Huwsmp? Hﬂsusump]
+6HPXN1N2[ M3 4 s PX ) NG IJ'IO]))
+ 8T (DU, ]+ 9T {4, 0] + BT (B ] + T (Cpn ]

1 _ _
4—¢F”1 “4n[Hu1---u4, ¢] + a¢ru1---us [Zul---us’ ¢]> .

e The rank-1 and rank-5 fields (in 11 dimensions) have a positive
mass, while the rank-2 fields are tachyonic.

A ApeAs A Ay
FAl' =T 4,.4. 177" = 4132432, I'a,4, 172 = —132x302.
—_—— - $ _ - g _
no sum no sum no sum

® The rank-1 and rank-5 fields has a stable trivial commutative
classical solution:

W =A,=Hy .= Zpps = 0.

e For the rank-2 tachyonic fields B, C,, ., the trivial solution
B, = C,,,, = 0 is unstable.
= They may incorporate an interesting stable non-commutative
solution!

12



From now on, we set the fermions and the positive-mass
bosonic fields to zero:

1
S = 96uTr (BMB“ + 5szcwz)
+ 32T (3C)0[B™, BY] + Couyyg[CP2,y, CH51))

The equations of motion:
B, = —ip'[BY,C,,],
Cripy = —iﬂ_l([Bma By,| + [Cuy”s Cuzpl)-

We integrate out the rank-2 fields (in 10 dimensions)
C\., .., by solving the latter equation of motions iteratively.

Cmuz — _":U_l([Bma Buz] + [Cmpa Cuzp] ) + e
—_—
:(_il‘_l)z[[B}q yBP1+[Cuyx1 ,CPX1],[Bpy, Bpl+[Cryxs :Cp*2]]
= - ?N_I[Bma B#zl + fﬂ_g[[Bun Bp]a [3“2, Bp]l

o(B2) with 1 commutator oB%) with 3 commutators
- ?iﬂ_s[[B[ul’ By], [[Bu,)s By, [B?, BX]]]

J

o(B%) with 5 commutators
+ ip"([[Buyy Bxals [Boy BX']], [[Bpgy Byols [B?, BX]]]
+ 2iﬂ_7[[B[#17 Bp]’ [[Bu2]7 Bx]’ [[B?, B,], [BX, B?]]]]
- ?iﬂ_7[[B[u1’ B,], [[B?, By, [[Bp,), Bs], [B, BU]]]1+O(N_9)-(*)

o(B8) with 7 commutators

Then, the action reduces to

S =Tr <96,UJBMB“ + 48,UJ_1[BM19 Buz][Bula Buz]

—~+ (higher-order commutators of the order O(u~2**1) with k = 2,3, .- )) .

We consider the classical solution of the equation of mo-
tion B, = —ip~'[B”,C,,| with C,,,, substituted for ().

13



Fuzzy-sphere classical solution'

1.(S0O(3) x SO(3) x SO(3) fuzzy spheres)

This describes a space formed by the Cartesian prod-
uct of three fuzzy spheres.

: N?—-1 ..
[Bi, Bj] = ipreijrBe, B} + B} + B} = p’r? y (54, k =1,2,3)
: NZ-—-1 ., .
[B,;I, ij] = ’I,[,L’I“Eifjflekf, Bi + Bg + Bg = /.1,2’]”2 1 ) (’I,,,],, k' = 4, 5, 6)
N? -1

[Bur, Byr] = ipsresnyon B, BE + B3+ B = ==, (i",§", K" =17,8,9)
By, =0, [B,,B,] =0, (otherwise).

(We consider the Cartesian product of three spheres instead of a single SO(3)
fuzzy sphere

[Bi, BJ] = ’l:/,l,’l"eijkBk (fOI‘ ’l:,j, k = 1, 2, 3), B“ =0 (fOI‘ H = 0, 4, 5, ey, 9),
because the solution By = « -+ = By = 0 is trivially unstable. )

2. [50(9) fuzzy sphere]
Generally, the SO(2k + 1) fuzzy sphere (S?* fuzzy
sphere) is constructed by the n-fold symmetric ten-
sor product of (2k + 1)-dimensional gamma matrices.

We should answer the following two questions about
these solutions:

1. Are these solutions not perturbed by the infinite tower
of the higher-order commutator?

2. Which solution is energetically favored?

14



Properties of the fuzzy 2k-sphere|

S. Ramgoolam, hep-th/0105006
Y. Kimura, hep-th/0301055

The SO(2k + 1) fuzzy sphere (S?* fuzzy sphere) is con-
structed by the n-fold symmetric tensor product of
(2k 4+ 1)-dimensional gamma matrices:

| Hr o
B£0(2k+1) _ 7[(Iw](g%) IR+ Q1)++-+(1®:--Q1® I‘I()Zk))]sym.

p runs over 1,2,.--,2k 4+ 1 in the (2k + 1)-dimensional Euclidean space.

The commutation and self-duality relation
SO 2k — SO(2k SO 2k .
(qu (2k+1) — [Bp (2 +1)’Bq (2 +1)]),

- ~
O BIOB Bk Z T a1,
ur
© BB = (M yigkn(n 1 2),
rY [Bgf(zk—l—l),BfO(Zk—l-l)] _ uzrz(—épsB(fO(zkH) 4 5q3350(2k+1))1kaNk,
&b [Bgf(%Jrl)? BsStO(Zk—H)] = Nzrz(5quz§t0(2k+1) + 5ptBtst(2k+1)
_6psBZtO(2k+1) _ 5th§80(2k+1)),
SO(2k+1) RSO(2k+1) SO(2k+1) pr\ 21 SO(2k+1)
¢ ePl"'P2k+1Bp1 sz T szk - <—> m szk-}-l ’
my = 2i, my = 8(n +2), mz = —48i(n + 2)(n + 4),
my = —384(n + 2)(n + 4)(n 4+ 6), more generally,
k
my = —2(—i)" (H 2p X (n+ 2p — 2)) (for & > 2).
p=2

15



e size of the matrix:
The size of the matrix NV, for the SO(2k + 1) fuzzy
sphere:

(n 4+ 1)(n+ 2)(n + 3)

N, = p (= 4] for n = 1)),
N, — (n+1)(n+ 2)(n3—|6—;03)3(n + 4)(n + 5) (= 8] for n = 1]),
B (n+1)(n+2)(n+3)2n+4)>2n+5>23(n+6)(n+7)

302400
(= 16[ for n = 1}).
Unlike the SO(3) fuzzy sphere, the SO(5,7,9,-:-)
sphere cannot be realized for all N = 2,3,4,---.
N; = 16(n = 1),126(n = 2),672(n = 3),2772(n = 4), - - -.

e special case k = 1:
This definition is identical to the SO(3) Lie algebra:

1. This is effectively a matrix acting on the symmetrized
N = (n + 1)-dimensional irreducible representa-
tion of so(3) Lie algebra, not on the original 2"-
dimensional space.

2. The radius of the fuzzy sphere is (from (Q))
BFO® Biot) — #n(n +2) = (ur)z#, where

N24_1 is the Casimir of so(3).

3. I‘z@) are identical to the Pauli matrices o;.

4. Self-duality condition (<) is trivially identical to

the commutation relation
[350(3)’ B;SO(S)]

SO(3)

= 1ur€;i1 By,

16



[Effect of the higher-order commutators]

We start with the ansatz for the rank-2 fields ngo(z’“"’l) for the
SO(2k + 1) fuzzy spheres:

G0 = i () B0,

L

The equation of motion for ngo(z’”‘l) reduces to

CquO(Zk—l—l) — —’i/.L_l([BpSO(Zk+1), B50(2k+1)] 4 [CpSrO(Zk—l—l), Cfro(2k+1)])

;ngo(zk“)(—f(r) + 1+ (2k — 1)r2f%(r)) = 0.

f(r) is determined as

1+ /1 —4(2k — 1)r2

Fe(r) = ok — 1)

U

The equation of motion for B§0(2k+1) leads to

SO(2k+1 2 _
BSOCRD (1 — 2kr® f1 (7)) = 0.

E—1
V1 —4(2k —1)r2 = —
e 1 —2kr’f (r) =0 (i.e. J1—4(2k —1)r2 = -5+
has no solution (except for k = 1, in which this is identical to

1 — 2kr2f,(r) = 0).

o 1 —2kr’fy(r) =0 (i.e. \/1—4(2k — 1)r2 = 4571 )

does have a solution r = ﬁ

The existence of the solution »(> 0) indicates that the
radius of the fuzzy sphere is not much perturbed by the
infinite tower of the high-order commutators.

17



[Comparison of the classical energy}

e Trivial commutative solution By = --- = Bg = 0O:
Ep,—0 = —SB,=0 = 0.
e SO(3) X SO(3) x SO(3) fuzzy spheres (IN; = n + 1):

16
T'so(3)2
= —12p°Ny(Ny — 1)(Ny + 1)
~ —O(p’n’) = —O(p’Ny).

ESO(3)3 — —550(3)3 —_ — T’P(BMBM)

e SO(9) fuzzy sphere:

5 3
Esow) = —Sso) = —g n(n + 8) Ny
6
~ —O(p’n'?) = —O(p’NY),
where the size of the matrices BgO(g) is

N (n+1)(n+2)(n+3)>2n+4)>2n+5>3*n+6)(n+7) N
e 302400

O(n'?).

When the size of the matrices are the same...

_ E
(N 1 =N 4 ) Commutative
0| Salution

6i5 SO(9) fuzzy
| sphere

3 SO(3)*S0O(3)*SO(3)
T fuzzy spheres

18



3 Summary

e We have investigated a massive supermatrix model to
seek a curved-space classical solution.

e We have found the triple SO(3) x SO(3) x SO(3) and
the single SO(9) fuzzy-sphere solutions.

* These solutions are not perturbed by the infinite
tower of the higher-order commutators.

* We have compared the classical energy.

[Future problems}

e Other classical solutions such as SO(3) x SO(6) fuzzy
sphere, fuzzy torus ...

e Quantum fluctuation of the fuzzy-sphere solution, es-
pecially for the higher-dimensional S2* spheres.

T.Azuma, S. Bal and M. Bagnoud, work in progress.
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Notations on the supermatrices'

The vectors and supermatrices are defined by

T

o — | M {n;} : fermions
>\ {bj}: bosons

a(d): mxm(nXmn)
a (3 bosonic matrices
M = ,
B(v): m X n(n X m)
fermionic matrices

~ d

Transpose I

e The transpose of the vector is defined by

T

b :(7717'°'777m7b17°'°7bn)°
1

20



e The transpose of the supermatrix is defined so that
TM satisfies T(Mv) = TvT M.

B a,B B Ta _T,.Y
orae=r (2]~ 7).

(Proof) We verify that this is well-defined by going back to the guiding prin-
ciple T(Mv) = TvT M.

an + Bb

(L.HS.) = T(Mw) :T<7n+db

) = ("nTa 47078, —"n"y 4+ Tb"a),
T, _ T
(RHS) = ("n,"b) ( rg 14 ) = ("n"a + 7678, —Tn"y + Tb7d).

e The transpose of the transverse vector y = (7, Tb) is
defined so that ' (yM) = TM™"y:

& Ty = T(Ty, Th) — (—bn).

(Proof) This can be again confirmed by comparing the both hand sides:

~T(Tna) =" ("by) )

(LHS.) = T(yM) =TTna +Tby,"nB + Tbd) = ( T(TnB) + T(Tbd)

[ =Tan—T~4b
~ \—"Bn+Tdb )’
T T T T
_ TNgT, [ @ =\ [—m)\ _[—"an—"7b
wis) = maamy = (18 57 ) (1) < (Than =T,
[Remark]: The transpose of the transpose of the vector
or supermatrix does not go back to the original one:

(s 2h=(33)-(% 7).
T(T(Z)):T(T,'%Tb): (—bn).

21



Hermitian Conjugate'

We settle the complex conjugate of the fermionic num-
bers @ and 3 as

(aB)’ = (B) ().

e We first define the Hermitian conjugate of the vec-
tor as

f foat
t_[(aB) _(a ~
= (58) =)
o y' = (Tn,Tb)" is defined so that (yM)" = MTy':

o' = n 7o) = (G ).

22



Complex Conjugate'

The complex conjugate is defined so that the superma-
trices and the vectors satisfy (Mwv)* = M*v*:

- =(1]-(£).

- (35) - (4. 2).

3
|

Yy = (Ty)T = (n,b)" = (—n",b").

[Prop] (1) "M = (M*)T, (2) MT = T(M*), (3) (M*)* = M.

A supermatrix M is real if

M is a mapping from a real vector to a real vector.

i.e. M satisfies M* = M:

a*:aa /3*:/37 d*:dv '7*:_’7/'
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