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1 Introduction

Constructive definition of superstring theoryl

A large N reduced model has been proposed as a nonper-
turbative formulation of superstring theory.

(IIB matrix model
N.Ishibashi, H.Kawai, Y.Kitazawa and A.Tsuchiya, hep-th/9612115.

For a review, hep-th/9908038

1 1 9 s 19
S = _—2TTN><N(_ > [Aas Ab]” — ¥ X T[Aq, 9]).
g 4 2 a=0

a,b=0

e A, and ¥ are N X N Hermitian matrices.

* A,: 10-dimensional vectors

* 1): 10-dimensional Majorana-Weyl (i.e. 16-component)
spinors

e This model possesses SU(IN) gauge symmetry and
SO(9,1) Lorentz symmetry.

e N = 2 SUSY: This theory must contain spin-2 gravi-
tons if it admits massless particles.

e The eigenvalues of the large N matrices A, are inter-
preted as the spacetime coordinate.



How does IIB matrix model describe the gravitational
interaction?

e | General coordinate invariance
S. Iso, H.Kawai. Int. J. Mod. Phys. A 15, 651 (2000) hep-th/9903217
The general coordinate invariance is interpreted as the
permutation Sy invariance of the eigenvalues of the
large N matrices.

e | Graviton and dilaton exchange
N.Ishibashi, H.Kawai, Y.Kitazawa and A.Tsuchiya, hep-th/9612115

The computation of the one-loop effective Lagrangian
reveals the graviton and dilaton exchange in 1IB ma-

trix model.
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Wetr ~ _w——y)STT’nlx’nl( . c(b))vTrnzxm( d C(”’)),

graviton exchange

1 1 2 2
2(x — y)8 TT"IX"I(fcsb)fcs,b))Trnzxnz(ftgd) ¥ )

dilaton éxchange

1,2 : 1,2
where éb’ ) = a21,2), a,(, 201,



Is it possible to formulate a matrix model
which describes the gravitational inter-
action more manifestly?

Can a matrix model describe the physics in the curved
space”?

e How is the local Lorentz invariance realized in the
matrix model?

e Does a matrix model reduce to the (type IIB) super-
gravity in the low-energy limit?

(IIB) Matrix Model

-

: * Perturbative limit

| [[Type lIB Superstring ]]

! Low—energy

|
|
|
|
I
|
|
|
\ * / limit 227 Low—-energy limit

\ J

Type IIB Supergravity




2 DMatrix as differential operator

We identify infinitely large IN matrices with differential
operator.

The information of spacetime can be embedded to ma-
trices in various ways.

e Twisted Eguchi-Kawai(TEK) model:

A. Gonzalez-Arroyo and M. Okawa, Phys. Rev. D 27, 2397 (1983).
A. Gonzalez-Arroyo and C. P. Korthals Altes, Phys. Lett. B 131, 396 (1983).

A, ~ 0, + a,.

The matrices A, represent the covariant derivative
on the spacetime.

e IIB matrix model:
A, ~ X,.
A, itself represent the space-time coordinate.
IIB matrix model with noncommutative background
[Pas Pb] = ©Bgp, (Bep = real c-numbers)

interpolates these two pictures.
H. Aoki, N. Ishibashi, S. Iso, H. Kawai, Y. Kitazawa and T. Tada, hep-th/9908141

TrynyNpT¢[A,, 1] reduces to the fermionic action
[ dixap(x)il (91 (x) + [ai(x), 1 (x)]) in the flat space in
the low-energy limit.



e A differential operator acts on a field in the curved
space naturally.

e The space of the large N matrices includes the differ-
ential operators on an arbitrary spin bundle over an
arbitrary manifold simultaneously.

space of differential operators
on bundle 2

space of differential operators
on bundle 1

Space of large—N matrice



[Attempts for a matrix model with local Lorentz invariance]

The fermionic action in the curved space:
Sr = /ddwe(w)tﬁ(w)ifaeai(aj) (Oip(x)
HA@), (@) + T el (@)
e a,b,c,- - : indices of the 10-dimensional Minkowskian spacetime.
i, k, ---: indices of the 10-dimensional curved spacetime.

The correspondence between the matrix model and the
continuum limit:

TTNxN — /dda},

b — U(z) = ei(x)y(z),

spinor root density
[Aa, ] — iex(z)e,(@)(i + [Ai(@), T)e (),
{Aalazaga";b} — e[alz(w)wiazag](w)w(w)

anti-commutator & product

The rank-3 matrices correspond to the spin connection!



Commutation relations of (anti)-hermitian operators:

()[h1,hs] € A, (2)[hya] € H, (3)[a1,as] € A,
(4){h1, ho} € H, (5){h,a} € A, (6){ar, az} € H.

e Hermitian matrices:
H={M € MNxN(C)|MT = M}. h,hihy € H.

e Anti-hermitian matrices :
A ={M € Mnyn(C)|M' = —M}. a,a;,a; € A.

[Proof of (4)] {h1, ho}' = (hihs + hohy)t = BRI + RIRY = {hy, hs}.

Notation of the gamma matrices:
{T*,T°} = 2n**, where *® = diag(—1,+1,---,+1),
We take the gamma matrices to be real:

a\T —— (Tpay __ -1 (a:O)
(FV—(F)_{+W(a=L%~w%'

C = (charge conjugation) = I'°, T%(I'*)'r° =17



Sr = [d'z¥(z)e (z)il e, (x) {8;(e 73 (2) ¥ ()
HAi@), e 3 @) B(@)] + [T wie(2)e (@) ¥(x) |
J Te e, ; lei T)Wjeq (T
— /ddaz{\ll(w)zI‘ ed (@)0i + e (@)wiea ()

t+ea'(w)er (2)(Bie 3 (2))| ¥(z)
+i¥ (2)0"e,’ (2)[Ai(), ¥ (2)]

)T, ()i (2)¥(0)

* / diz (¥ (z)il"e," () (8; ¥ (z) + [Ai(z), T(x)])

)T, ()i (2)0(2)

In =, we have utilized the following relationship (when ¥(z) is Ma-
jorana):

(2)I¥(z) = (P(2)I*¥(z))" = —¥'(2)(T*)"(T°) ¥ (2)
= —Ui(z)I°T%(r)irw(z) = —v(z)r*w(z) = 0.

The corresponding matrix model is
1 Ta i abc
Sr & ETT"pI‘ [Aaa "p] + 5¢F {Aabca ¢}
— TT(@EFaAa"p + i@EI‘alaza?’Aalaz%@b)'

Proof of the equality (only for the boson, when v is Majorana):
1 _ 1_
STT (W [Aa, ¥]) = _pAT Ay T (E4t7, 1))
1_
= EtpAI‘aAfz/;CTr(tAtBtC — t9tBt4)

= %(&AFGAG%C — YT AP Tr (t4Pt°) = Tr (T Agvp).



[Local Lorentz transformation and the ”gauged” model}

The symmetry of IIB matrix model:
SO(9,1) and U(N) symmetry is decoupled.
The SO(9,1) x U(IN) symmetry is a tensor product of the
group. For ¢ € so(9,1) and u € u(N),

exp(C®1—|—1®u):eC®e“’.

The spacetime coordinate is embedded in the eigenval-
ues of the large N matrices.

— If we are to formulate a matrix model with local
Lorentz invariance, the so(9,1) Lorentz symmetry and
the u(INV) gauge symmetry must be unified.

(*) A, B = [The Lie algebras whose bases are {a;}
and {b;}, respectively.]

e A ® B: The space spanned by the basis a; ® b;. This
is not necessarily a closed Lie algebra.

o ARB : The smallest Lie algebra that includes A ® B
as a subset.

The gauge group must close with respect to the com-
mutator

la® A,b® B] :%([a,b]®{A,B}—|—{a,b}®[A,B]).

10



(*) In order to grasp the intuitive image of the unified
tensor product, we consider the following simple example.

su(6) = su(3)Qsu(2).

A?: basis of su(3) (¢ =1,2,---8).
o': basis of su(2) (1 = 1,2, 3).

e \® o' (24 dimensions): The basis of su(3) ® su(2),
which does not constitute a closed Lie algebra.

e \“®1+1®o" (11 dimensions): The generators of the
Lie group SU(3) x SU(2).

o su(3)®su(2) = (su(3)su(2))D(SU(3) X SU(2))aigebra
This is a closed 35-dimensional Lie algebra.

SU(3) x SU(2) is a 11-dimensional Lie group,
while su(3)®su(2) is a 35-dimensional Lie algebra.

11



(Local Lorentz transformation of the matrix model

6/‘70 - Fa1a2€a1a2¢7

instead of §9 = [I'“1“2{e,,,,1} at the cost of the her-
miticity of 1.

At this time, the product A,y does not directly corre-
spond to the covariant derivative (9,¢ (x)+[Ay(x), Y (x)]).

The local Lorentz transformation of the action:
1 |
68, = ZTrq,b[I‘“Aa + 019293 4 oo, T002gy 4 Tap,
However, this action does not close with respect to the
local Lorentz transformation:
[ira1a2a3Aa1a2a3, Fblbzsblbz]

i .
— 5 [Fa1a2a3’ Fblbz]{Aa1a2a39 Eble} + - {Fa1a2a3 Fblbz}[Aa1azaa’ €b1b2]
rank 3 rank 1,5

We need the terms of all odd ranks in order to formu-
late a local Lorentz invariant matrix model.

The algebra of the local Lorentz transformation must
include all the even-rank gamma matrices:

a1a2 blbz /
[T, 4., T €, bz]

1 1
— 2 [Fa1a2 Fb1b2]{€a1a2, eblbz} + = {Fa1a2 Fb1b2}[€a1a2, sblbz]
rank-2 rank- 0, 4

12



3 Attempts for a matrix model related to the type 1IB
supergravity

S = Trnxn[trszxs2V (m?) + Ppmap]

e T'r(tr): the trace for the N x N (32 X 32) matrices.

e m includes all odd-rank gamma matrices in 10 dimen-
sions:

)
_ a ajasa
m = m,JI" + Qmalazagf 3 —

() 1

_ _ a1---a7 _ a]_"'ag
7!mal...cwI‘ + 9!mc,,l...a,gI‘ ,
where mg,...q,, , are hermitian matrices:

in—l

T 32x (2n—1)!

Mgy-ag, 1 tr(mlq,. a5, {)-

m satisfies I'’mT° = m, and the action is hermitian.

We want to identify m with the Dirac operator.
— We introduce D = [(length) '] as an extension of
the Dirac operator.
m = 712D, where T —[(length)]?,

v 1
D = A,J?+ 5Aalaza?’Iwauazabs _ gAal---asI‘alm%

i 1
= o Aarear T AT,

13



2n—1

v
Aayazm_1 = 33x@n—i)

ferential operators.

tr(DIT'*1%n-1) are hermitian dif-

= They are expanded by the number of the derivatives:

o gk o
Aqyagn_y = Qay-agy_y (:B) + 2_: E{ail te aik? a’(“mzk)al"-aznq (:L')}

- [(length)—1+¥]

a,?(x) is identified with the vielbein e,’(x) in the back-
ground metric.

: 1
D = e%(w) {iea’(w)I“” (&i - EI‘bcwibc(m)ﬂ e_%(:r:)
+ (higher-rank terms) 4+ (higher-derivative terms).

The potential V (m?) is generically V (m?) ~ exp(—(m?)%).
— The damping factor is naturally included in the bosonic
term.

— The trace for the infinitely large N matrices is finite.

1 is a Weyl fermion, but not Majorana.

We need to introduce a damping factor so that the trace
should be finite.

P = (X(«’B) + lgl X(il..fl)(m), 87;1 L. ail)e_(TDz)a,
[(length)]

14



( Local Lorentz invariance]

The action is invariant under the local Lorentz trans-
formation:

dm = [m,e], 69 =ev, Oy = —ipe, where

e = —igp+ —

e All even-rank gamma matrices are necessary for the
local Lorentz transformation algebra to close.

e ¢ satisfies I'’¢'TY = ¢, and thus the commutator
dm = [m, €| actually satisfies I'°(6m)T° = dm.

The invariance under the local Lorentz transformation:
§S = 2Tr[tr(Vi(m?)m[m,e])] + Tr[tr(p[m,elyp)] = 0.

The cyclic property still holds true of the trace for the
large N matrices, if we assume that the coefficients damp
rapidly at infinity:

lim a@), . (z) = lim x@%®)(z) = 0.

[Proof]| After integrating in the action, the following commutator van-
ishes:

Tr([0j, a7y . ap,  (2)])
[ d%ax (x| (0;a1 W)y .0y, ,(x))|z)
= [d(8;a""W) g, .y, (@) (z|2) = 0.

15



[Heat kernel expansion]
The trace of the large N matrices is analyzed through
the heat kernel (Seeley de Witt) expansmn, which is the
expansion around e 7%9" — — e~ ™M,

We seek the answers of the following questions:

e Is my = ¢:I'*9, (the Dirac operator in the flat space)
a classical solution?
(If so, this model cancels the cosmological constant.)

e Which fields are massive and decoupled in the classical
low-energy limit?
If this model is to reduce to the type IIB supergravity,
only the following fields must remain massless:

* even-rank antisymmetric tensor a(i)ial...azn (x)
* dilatino x(z), and gravitino x () (z)

The computation is performed through the Campbell-Baker-Hausdorff
(CBH) formula:

Tr(e~™P") = /ddaz(az|e_7D2|w)

=X ) =AY R ——X )
= Tr |exp | (—=70,0%) + (—7(D? — 8,0%)) | exp | 78,0° | e 7%

CBH

- 1 1
= Tr|exp (Y +o XY+ DX +Y, [X +Y, —X]]

1 X
F X X X Y] e e

Tr (1+Y+1[X Y] 1[X [X, Y]]+1Y2+%[X,Y]2

—|—Y[XY]+ [XY]Y+ ) -X

(wle X |y) = (2;)% exp (—%(w —y*) (" — y")nab> :

’

16




The Laplace transformation of V (u):
V(u) = /Ooo dsg(s)e *".

Then, the bosonic part is expanded as

Tr(trV(m?)] = /OOO dsg(s)Tr[tre P
3 (7 dete)emi)
[(length)]~

d
2 | k=

If m is to be a classical solution,
= The linear terms of the fluctuation around my should
vanish.

e The linear terms of the derivatives vanish after inte-

grating in the action:
[ d%x (8, - - - 8,0, (1)) = 0.

e Only a scalar can constitute a Lorentz invariant linear

term.
— We focus on the following terms:
Qa(ailil"'ilil)(w)l c .A_l(a:).

[(length)]?
must vanish.

—ae(x) € Ao(x)

The coefficients Ay(x), A_;(x), A o(x)--
Then, the cosmological constant / d%x J
(27T)2

also vanishes.

17



Then, the following condition must be satisfied:

- a4
./0 dsg(s)s™ 2 =0, (n=0,—-1,—2,.-+)
- 0.

& [TduV(uw)utt™ =0, (n=-1,0,1,2,---).

(Joo duV (u)u*t = [° dudsg(s)e " u*"! = I'(ex) [§° dsg(s)s™).

V' (u) is chosen as, for example,

g 1
02 1(e " sin u4)

d
Ouz"1

Vo(u) =

The model reduces to the Einstein gravity in the clas-
sical low-energy limit.

e The linear term of the vielbein a,(*(z) vanishes.

e The cross terms a,®(x)ay %) (x) also vanish, due
to the general coordinate invariance.

R(x)
6

———

[(length)]_2 € A (x)

Tr[tre ™77 / d’z gTe(a:) N

V (u) must be chosen so that A, (x) survives in the ac-
tion.

18



(Which fields are massive or massless?)

mass terms: a(il"'i’“)al...azn_l(:I:)a(jl"'jl)al...azn_l(:I:)J,
(length)] 27, A1 ()
kinetic terms:?kla(il"'ik)al...azn_l(:L')Bkza(jl"'jl)al...azn_l(w)J,

[(length)]_4+k+vl € A2_%(w)

e odd-rank antisymmetric tensor a,,....,, ,(x):
Mass terms € A, (x), Kinetic terms € Ay(x).
These fields are generically massive.

e even-rank anti-symmetric tensor a'";,, ..., (x):
Mass terms € Ay(x), Kinetic terms € A, (x).
They may be massless 77

e Higher-spin fields: a), .. () (k = 2,3,--+):
The mass terms and the kinetic terms are absent.
No clue of whether they are massive.

19



(N = 2 SUSY)

The SUSY transformation of the model:

oY

om

2V'(m?)e, 69 = 2V’ (m?),
e + Pe.

SUSY invariance of the action

5.8 = Tr[tr ((2V'(m*)m(e + €)) + P (e + Ye)y
+2ymV’'(m?)e + 2€mV’(m2)¢>] = 0.

Commutator of the SUSY transformation on shell:

In the following, we assume that the Taylor expansion of

V(u) around uw = 0 is possible.

[0, O¢]m = 2[€€ — €€, V'(m?)],
[66, 65]’0# = 29 (Em

m
2 2

Vim) —VI(0) o Vi(m?) - Vo).

20



In order to see the structure of the N/ = 2 SUSY, we
separate the SUSY parameters into the hermitian and the
antihermitian parts as

€ =€ +te3, & =& + 1§,

(&1, €2, €1, €2 are Majorana-Weyl fermions.)

The translation of the bosons is attributed to the quar-

tic term in the Taylor expansion of V (m) = =2, ©2km?F.

We assume that the SUSY parameters € 3, £12 are c-numbers (pro-

portional to the unit matrix 1nxn)-

1
[0e, 0¢] Ay = Etr ([0ey O¢]mI?)

1 oo
= 16 kX_jz asptr (EEM?F 2T — efm* 21

—m?2k—2¢gere 4 mzk_2e€I‘“)

= 1§ an(@m? 2, 1% — em? 2, T7¢)
16 k=2

— :’_;(E[Fmebz, Fa]e . E[Fblrbz, I‘a]g)AblAbz 4.
a - . .

= (T — eE)[Ap, Al + - -
ay, — . _ .

= (e + &l'e) (A Aa] + -,

The field a,(x) receives the translation and the gauge
transformation:

[Ai7 Aa] — [Zaz + af,;(ZI?), 10, + a,a(aj)] + ...
= ?(aiaa(w))l \—z’(@aai(w)) + [a,,i(;[;), aa(w)]l‘l‘ cen,

translation gauge transformation

21



However, the fermions do not receive the translation.
n —
[de O]ty = — 3 antp(Em™ e — em™ %) + -

= —a4(€:[‘j€ — Erj€)¢Aj ‘l‘ $ee
= —20,4(51]:"7.61 —+ 52F362)¢AJ 4 eee

We explore the term 1 A; more carefully:
YA, = ipd; + -
= (x@3; + £ X0(@);, -+ 83,0;) TP 4
=1
Therefore, each fermionic field is transformed as

Godd@ =0k
[667 6£]X(21-..u+1) (w) — —2a4(§_11‘3€1 + gzrjez)x({zl...zl) (w)5u+1}g 4.,

(*) -+ - denotes the omission of the non-linear terms of the fields.

It is a future problem to surmount this difficulty.

22



4 Conclusion

e We have pursued the possibility for a matrix model
to describe the gravitational interaction in the curved
spacetime.

e We have identified the large N matrices with the dif-
ferential operators.

® In order to describe the local Lorentz invariance in a
matrix model, the following two ideas are essential:

* We have identified the higher-rank tensor fields
with the spin connection.

* s0(9,1) Lorentz symmetry and the u (V) gauge sym-
metry must be coupled.

e We have attempted to build a model which reduces to
the type IIB supergravity in the low-energy limit:

* We have elucidated that the bosonic part reduce
to the Einstein gravity.

* There are many problems for the supersymmetric
model:
N = 2 SUSY, the mass of the fields - - -

23



Differential operators in the space of large IN matrices'

[Scalars on S 1}

"""""""" X _X
0 1 2 N 0 1 2 N
N N N N N N
(1) trivial bundle with the periodic (2) Z2-twisted bundle with the antiperiodic
condition f(1)=f(0). condition f(1)=—f(0).

(1) Trivial bundle:

We first consider the trivial bundle with the periodic condition
f(1) = f(0). We discritize the region 0 < x < 1 into small slices of

spacing € = L.
(%) (f(’““)e Fn )+f(]3)—f(’“;v1))

€
N (k+1 k—1
=5 003
0 1 ~1
~1 0 1
9, > A=V ~10 1
2
1 ~1 0

(2) Zo-twisted bundle
Now, the periodic condition f(1) = —f(0) is imposed:

0 1 1
—1 0 1
N
0, > A=— —1 0 1
2
—1 -1 0

24



[Laplacian on various manifolds]

iy i, 13 arethe neighbours of i.

11 T 13 13

A—-K=\. .1 _311

In the space of a large IN matrix, the differential operators
over various manifolds are embedded.

25



Hausdorff’s moment problem'

[Theorem] (Hausdorff) Let f(x) be a continuous function. If
1 n
/0 dxf(x)x" =0,
form =0,1,2,.-., then f(x) = 0 for all z € [0, 1].

However, this statement does not hold true if we re-
place [0, 1] with [0, co]:

[Example] The continuous function
h(x) = exp(—m%) Sin(w%)

satisfy /3¢ deh(x)x™ = 0 foralln =0,1,2,- ..

[Proof] We note that
/Ooo dyy™e Y = mla ™!
1+i

fora = exp(%) = ﬁ
when m — 3 is a multiple of 4.

andm = 0,1,2,---. This is a real number
Taking the imaginary part of the both hand sides, we obtain
00 .Y Yy
dyy*™ 3 sin(—=) exp(——=) =0
- dyy (5 exp(= ) =0,

form = 0,1,2,-.-. We make a substitution * = %4 to obtain
j§gedzh(x)x™ = 0. (Q.E.D.)

26



Explicit computation of the Seeley de Witt coefﬁcients'

We consider the trace of the large N matrices in terms of the heat kernel: The trace of the operators
are expressed using the complete system as

Trm = /dDac<x|m|x>, (1)

where the bracket |z) and (z| satisfies ), |z)(x| = 1. However, it is difficult to consider the trace
of a general operator, and we regard the operator as the sum of the Laplacian and the perturbation
around it. This is a famous procedure, and the perturbation is expressed in terms of Seeley de Witt
coefficient.

It is well known that the Green function is computed to be

d d e(y) (z = y)'(z — ¥V 955(y)
— . 2
e (70" 0) ) ) = 0 e ( = 2)
We consider the general elliptic differential operator
d d - d
2 _ _ . _ _—
D? = — (g {a) s s + Ai(w) 1+ Bla) ) Q
And we are now interested in the trace
Tr exp(— / (x| exp(—rD?)|z). (4)
To this end, we compute the following quantity utilizing the Campbell-Hausdorff formula:
(x| exp(~=7D?)|y) = (z|exp(X +Y)|y), where (5)
d d
X =
(W) ()
Y =7 ((67(0) = 70) s + A0z + B@)). g
dzt dx? dzt
The Campbell-Hausdorff formula is
1 1
AP —exp (A+ B+ 3[4, B + 15(A 4B + B, [B,4) + ). (8)
Since we know that (z|e™|y) = ( e(y))d exp (—ﬁ(w —y)i(z —y)gi; (y)), the quantity in question is
27T)2
computed as
X+4Y X 1
e e = exp Y+§[X,Y] 12([X+Y[X+Y X+ [-X,[- X, X +Y])+---

~ exp <Y+ X, Y]+ 112(2[X,[X,Y]]—[Y,[Y,X]])+--->

— 14V —[X V4 X[ V] V[ V] +

6
(Y+ [XY] é[X,[X,Y]] 112[Y[XY” 24
= 1+Y+%[X,Y]Jr%[X,[X,Y]]+%Y2+%[X,Y]2+%Y[X,Y]+é[X,Y]Y+...(9)

27



Before we enter the computation of the quantity (x|eX*Y|y), we summarize the formula of the differ-
entiation of eX:

deX 1
drt _Z( y)’ gz]( )
d?eX 1 1 } . ¥
e = (- 2gmxw4jfﬂ$—w1@—yV%m@Mmﬂw>6,
d3eX 1 !
Trndendes =\ 22 @ ) (G ()91 (Y) + Giais (4)9010(y) + Giir (¥)921(y)
1 I I I3 X
- @(m —y)" (@ —y)? (@ = 9)? g1, (Y)Gisl, (Y) Gigts (¥) | €7
d*eX 1
Triderdeindet =\ g2 Winia (W)9iis (Y) + Gisia (V)14 (4) + Ginia (4) 9121 (4))

—%(w — )" (@ = 929152 () Gisty (V) Gists (V) + Ginis (V) Gir 12 (V) Giats () + Girie V)it (V) Giats (¥)
+ivis (V) Gints (Y)Gisty (V) + Ginia (V) Girty (Y)Giatn () + Gigia (V) Girt (Y)Ginty (¥)

1 .
i@ =) @ = 9)" @ = 9)° @ = 9)" it 0)ista () 9ists (1) Giats (y)> et
(10)
Computation of Ye~
We start with the computation of the easiest case:
. d d ~ d
veX = U () — Al(x)— + B X
& = 7 ((67(0) ~ g7 ) s 77 + A @)+ Bla) ) e
1 . . . g 1 1
= (TB(»T) = 54T =9V 9i5(y) + (97 (@) = 9" (W) (=593 (y) + (@~ )" (@ = )29, (¥) g1, (y))> e
(11)
Therefore, the trace is obtained by
/dd (x|YVeX|z) = /dd e i (x). (12)
T)?2
Computation of $[X,Y]e*
We next go on to a bit more complicated case, and we compute the operator [X,Y] itself:
» d d s s d d ; d
— 2 111 7 Ji] — 1 J -
[X,Y] = 7 (9”(y)d$il dxi2> X ((g ) = g () o A () o +B(:c)>
s - d d ; d » d d
— 2 J1J _ oI J(p) —— @11
7 (g7 @) = g @) o + A @)+ B@)) x (7))
o dgjljZ (x) a3 o d2gj1j2 (x) d2
2 i1t i1t
= 2g"*2 . — 1%2 — —
' (g W) dz*r " dx"2da)rdv)? A dzrdx®? ~ dxirdxi?
- dA) (z),  d? - dA) (z) . d
2 21122 A _ _ 2112 - / -
297 ()( dzn )dm”dmﬂ T (y)(dmlld:c”)dmﬂ
- dB(z), d . d’B(z)
297'17'2(y)( dxll )dx” _'_97412 (y)(dxlldeZ) ° (]‘3)

Therefore, the trace is computed to be, with the help of the formulae (10),

T( X, Y]e™) /dd XYX|w>
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elx - 20132 (4 i 2. 2B(x
[atn £, { (—iglm(x)m(x)(—d o) LAt ))> + g (@) () )}.

(277) % dx dz*? 2" dz? 2 dx dz*?
(14)
Computation of $[X, [X,Y]]e*
We compute the operator [ X, [X,Y]] as
- d29j1j2($) d4
_ 3 kik
[X7 [X7 Y]] =T <4gz1Z2 (y)g ! 2(y)( d.%‘“d.%‘kl )d.%‘z2d.%‘k2dx]1d.%‘92
» d3g7 72 (x) d? » d*g7172 () d?
11 k1k: 11 k1k:
g )g 2(y)(d:vild:ci?d:ckl )d:ck2dmj1d:cj2 +9" g™ 2(y)(d;cil dx®2dzk dxh2 )d:cjldfzcj2
» d’ Al () d?
4g"1"2 k1k2 . i .
+49"" (W) (y)(dm“dajkl)d:cz?d:ck?dmﬂ
., 43 A (z) d? » d* Al (z) d
11%: k1 ks : k1k:
+49 ! Z(y)g ! Z(y)(dmlld:c“dxkl )dCCZZdCC-] + gZIZ2 (y)g ! Z(y)(dle dl‘”dl‘klda?kz )%
- d*B(x) d? . d®*B(x) d
ki1k ki1k
+4g“z2(y)g ! 2(y)(dx“d.%‘k1)dwl2dxk2 +49Z1Z2 (y)g ! 2(y)(dx“d.%‘l2d.%‘k1)dxk2
» d*B(x)
1142 k1ks 1
Therefore, the trace is computed as
1
Tr(G [ [X,V]e¥) = /dd X, V)X 2)
a, €) L i . A’ 2 (x), 1 d°g¥ ()
- [ @)} { (69 @0 0 mgn )+ 5 i)
- d*giJ2 () L, BA (), 1, d’B(x)
—’r2 (Egili2( )gJ1]2 (x)gkl]w (x)(dxhdxizdxhdwkz) + §gm2 (x)( i) )+ gguw (x)(d$ildxi2)
3 4
T i 17 d*B(z)
Computation of %Y%X
The next job is the computation of the term %Y2:
y2 — ( i1i2(l.) _ i1i2( ) d? Az(x)i + B(x) ( j1j2($) — j1j2( ) d Aj(:c)i + B(x)
g I i dge dx? g TN G i dxd
o o . o d*
= 7 ((gw () = () (g7 (@) — 79 () o
i dg’7? (x) d’ v v R GO &
+2(g"" () — 4" (y))( T ) e T 9 (@) = W) () T
o » , d? - - dA) (z),  d?
2(girt2 1112 Al i i i 2(girt2 _i1i2 \ } i
+2(9""7 (2) = 9" (W) AN (@) s 2097 (@) — 6" W () g
ii: ii: d*Al(z), d i1 i1 d?
+(g"" (x) — g"* W) g T (077 (@) = "2 () B(2) o
. - dB(z), d X i d’B()
+2(9"" (@) — 9" W) () oy + (977 (@) =" W) ()
- dgiI2 () d? - - d? d dB(x)
i) ) e K@) () o A @B )+ A ()
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d? d
d;(;jl d:(;J2 +

(9"% () — g"*(y))B(x)

The trace is thus

(27T)2 4 da?
AT + LB B@) ) (18)

Computation of $[X, Y]?**
We next compute the commutator [X,Y]?, however, from now on, the computation becomes more
complicated than before, and we give only the trace:

Tr(IXYPe) = [ dtalel X, V¥ o)
1

e x 172 (4 lil2 (4
= Jaa oy { (‘Eg @i @) L (A

(27T)

g2 (x), dg""(z), 1 dgV*(z), dg""™(x)

_gg ( )gjlll( )gj2l2(1‘)( doi Aok 4 At A )91, (%)
lilz (g 172 (4 P (g 9z
@) 2]y Ly 20, A0 ))>+o(72)}. (19)
Computation of 1V [X,Y]e*
(;Y[X Y)e /dd (2|~ Y[X Y]eX|2)
= [ { (ﬁ(@(%j))m (@) + %Ai(x)gw(xx%if”))
- 2 AT (x - T
—r (69’“’“2( )i ()4 () (D)) L gy (P,
200102 (1 . 3gi1I2 (1
a2 (@05 () By 1 LR )5, () A1) (T
; 2 47 xz : xz
a2 4 gL ))>
T3 2 X
+ B (x)(d%x;)} . (20
Computation of $[X,Y]Ve*
(1 X, Y]yeX) /dd X vy eX|a)
e(x L okiks o o dg"**(x), dg'’? (z)
I { (Egk b ()gi, ()5, (o) (2D
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dgi1i2 (x) dgj1j2 (iC)

_{_lgklh (x)giljl (x)giﬂz (CC)(

6 dxk dxk2

1 dg"®(w) dg/2(z), 1 dgh¥(x) dg"™ (z)
+ggi1i2 ()( dain )( dai2 ) + ggizjz (@)( dxit drit

1 dg’7*(z). 1 dg72(x) i 2
L 0@ (B2 iy J PO i) voe L @

Seeley de Witt coefficient of the second lowest order

Now that we have computed all of the contribution of the Seeley de Witt coefficient of the order
d

O(7172), we sum all the results. Then, the trace is finally rewritten as

e D7) = dolole ™07 |2 = d,, e(z) a ra
Tr(e™) = [ el ™) = [ o D gt kot (22)

It goes without stating that the coefficient a¢ of the lowest order is agp = 1. Then, the subleading
effect is

a(z) = B(x)—%(d‘z;(f))Jré(d;z;g))—% ““(fc)gjljz(w)(%
b L@ OB L i) 41015 0) + 2 A @) (o) )
+ 2—89'“'“2(96)91-1@(w)gjljz(x)(dg;;fx) dgz,ﬁfx)
b )i, ()i () ()
S e LA et G PO A 2By Ak Gy (23)

Consistency Check with respect to the covariant Laplace Beltrami operator
We now check the consistency of the result (23), by applying the above results to the covariant Laplace

Beltrami operator

1 d y d
A - e J e
@) = o (Vo @ 15
y d d dg" (z) 1 . d d
= tJ e - — —qg¥ 5 4 ;
g )+ (( ) — 2 @) (g @) | - (24
where we have utilized the differentiation of the determinant
dg(x) = g(x)g" (x)3gij(x) = —g(x)gij (x)6g" (x). (25)
Then, the problem corresponds to the case in which
i _ dgij(l“) 1 ij d _
i) = (( L) = g @) (g @)gule) | Bla) =0, (26)

In this case, we expect the coefficient aq(x) to be

= —g"7 (@) (=0T}, + 0k Tl — ThTh, + Twl%)
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L i d?gh2(z), 1 d?g"(z), 1 dg™"(x) dg""(z)
= Egl](x)glllZ(x)(W _E(W g( drm ) dze V90,1 ()
5 i dg"" (), dg™™(z), 1 dg™" | dg™ " (x)
- ﬂg”(x)ghnu(x)glzmz(x)( drt )( drd )+Egl1l2(x)( drmi )( dr™2
Ly dg""2(z), dg™ "™ ()
— 5797 @901 (@) gy () () (F—). (27)

as investigated in Di Francesco’s textbook.

And when we substitute (26) into the Seeley de Will coefficient a;(z), we successfully obtain (27).
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