Monte Carlo studies of the spontaneous rotational symmetry breaking in a matrix model with the complex action

Takehiro Azuma [Visiting Fellowship at Tata Institute of Fundamental Research (TIFR)]

Tea-duality meeting at TIFR, Nov. 3rd 2006, 16:00 \sim 17:00 Collaboration with K.N. Anagnostopoulos and J. Nishimura

Contents

1	Introduction	2
2	Simplified IKKT model	4
3	Monte Carlo studies of the model	6
4	Conclusion	19

1 Introduction

Matrix models as a constructive definition of superstring theory

IKKT model (IIB matrix model) \Rightarrow Promising candidate for the constructive definition of superstring theory.

N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, hep-th/9612115.

$$S=rac{1}{g^2}\left(-rac{1}{4}{
m tr}\,[A_\mu,A_
u]^2+rac{1}{2}{
m tr}\,ar{\psi}\Gamma^\mu[A_\mu,\psi]
ight).$$

- Dimensional reduction of $\mathcal{N}=1$ 10d Super-Yang-Mills (SYM) theory to 0d. A_{μ} (10d vector) and ψ (10d Majorana-Weyl spinor) are $N\times N$ matrices. Eigenvalues of $A_{\mu}\Rightarrow$ spacetime coordinate.
- Matrix regularization of Green-Schwarz action of type IIB superstring theory.
- $\mathcal{N}=2$ supersymmetry in 10 dimensions.
- Matrices describe the many-body system.

- ullet No free parameters: $A_{\mu}
 ightarrow g^{rac{1}{2}} A_{\mu}, \ \psi
 ightarrow g^{rac{3}{4}} \psi.$
- Evidences for spontaneous breakdown of SO(10) symmetry to SO(4).

 J. Nishimura and F. Sugino, hep-th/0111102, H. Kawai, et. al. hep-th/0204240,0211272,0602044,0603146.
- Complex action (after integrating out fermions):
 - * Crucial for spontaneous breakdown of rotational symmetry: J. Nishimura and G. Vernizzi, hep-th/0003223.
 - * Difficulty of Monte Carlo simulation

2 Simplified IKKT model

Simplified model with spontaneous rotational symmetry breakdown,

J. Nishimura, hep-th/0108070.

$$S = \underbrace{\frac{N}{2} \mathrm{tr} \, A_{\mu}^2}_{=S_b} \underbrace{-ar{\psi}_{lpha}^f (\Gamma_{\mu})_{lphaeta} A_{\mu} \psi_{eta}^f}_{=S_f}$$

• A_{μ} : $N \times N$ hermitian matrices $(\mu = 1, \dots, 4)$ $\bar{\psi}_{\alpha}^{f}, \psi_{\alpha}^{f}$: N-dim vector $(\alpha = 1, 2, f = 1, \dots, N_{f}), N_{f} = \text{(number of flavors)}.$

$$\Gamma_1=i\sigma_1=\left(egin{array}{c} 0 & i \ i & 0 \end{array}
ight),\; \Gamma_2=i\sigma_2=\left(egin{array}{c} 0 & 1 \ -1 & 0 \end{array}
ight),\; \Gamma_3=i\sigma_3=\left(egin{array}{c} i & 0 \ 0 & -i \end{array}
ight),\; \Gamma_4=\sigma_4=\left(egin{array}{c} 1 & 0 \ 0 & 1 \end{array}
ight).$$

- \bullet SU(N) symmetry and SO(4) rotational symmetry.
- Partition function:

$$egin{aligned} Z &= \int dA e^{-S_B} (\det \mathcal{D})^{N_f} = \int dA e^{-S_0} e^{i\Gamma}, ext{ where} \ \mathcal{D} &= \Gamma_\mu A_\mu = (2N imes 2N ext{ matrices}), \ \ e^{-S_0} = e^{-S_B} |\det \mathcal{D}|^{N_f}. \end{aligned}$$

Analytical studies of the model

Solvable at $N \to \infty$ using random matrix theory (RMT) technique.

$$\langle rac{1}{N} {
m tr} \, A_{\mu}^2
angle = \left\{ egin{array}{l} 1+r, \; (\mu=1,2,3) \ 1-r, \; (\mu=4), \end{array}
ight.$$

for small $r = N_f/N$.

Spontaneous breakdown of SO(4) symmetry to SO(3).

For the phase-quenched partition function $Z_0 = \int dAe^{-S_0}$,

$$\langle \frac{1}{N} \operatorname{tr} A_{\mu}^{2} \rangle = 1 + r/2 \text{ for } \mu = 1, 2, 3, 4.$$

The phase plays a crucial role in the spontaneous rotational symmetry breakdown.

Gaussian expansion analysis up to 9th order:

T. Okubo, J. Nishimura and F. Sugino, hep-th/0412194.

Spontaneous breakdown of SO(4) to SO(2) at finite r.

3 Monte Carlo studies of the model

Brief History of the Monte Carlo simulation of large-N reduced models

(Bosonic models)

- Simulation of bosonic Yang-Mills model T. Hotta, J. Nishimura and A. Tsuchiya, hep-th/9811220
- Simulation of bosonic Yang-Mills-Chern-Simons models
 - \Rightarrow Properties of fuzzy manifolds (fuzzy S², S⁴, CP², S² × S²).
 - T. Azuma, S. Bal, K. Nagao and J. Nishimura hep-th/0401038,0405096,0405277,0506205
- Simulation of finite-temperature BFSS-type (0+1)d models.
 - N. Kawahara, J. Nishimura and S. Takeuchi, in preparation.

Supersymmetric models

Simulation of IIB matrix model is difficult due to sign problem.

- hybrid R (or hybrid Monte Carlo) simulation of the 4d supersymmetric model (fermion determinant is real positive, $O(N^{5,(6)})$ CPU times).
 - J. Ambjorn, K. N. Anagnostopoulos, W. Bietenholz, T. Hotta and J. Nishimura, hep-th/0003208, K. N. Anagnostopoulos, T. Azuma, K. Nagao and J. Nishimura, hep-th/0506062.
- hybrid Monte Carlo simulation of the one-loop effective action of the quenched 10d IIB matrix model, $(O(N^3))$ CPU time).
 - J. Ambjorn, K. N. Anagnostopoulos, W. Bietenholz, T. Hotta and J. Nishimura, hep-th/0005147.

Complex action plays a key role in spontaneous breakdown of Lorentz symmetry:

- J. Nishimura and G. Vernizzi, hep-th/0003223.
- Factorization method to simulate a complex action system.
 - K. N. Anagnostopoulos and J. Nishimura, hep-th/0108041,
 - J. Ambjorn, K. N. Anagnostopoulos, J. Nishimura and J. J. M. Verbaarschot, hep-lat/0208025.

Hybrid Monte Carlo (HMC) simulation of the phase-quenched model

HMC simulation of the partition function Z_0 with the phase omitted.

Observable for probing dimensionality : $T_{\mu\nu} = \frac{1}{N} \operatorname{tr}(A_{\mu}A_{\nu})$.

 $\lambda_i \ (i=1,2,3,4)$: eigenvalues of $T_{\mu\nu} \ (\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \lambda_4)$

Results for $r = \frac{1}{4}$ (left) and r = 1 (right), for N = 8, 16, 32, 64, 128.

$$\lambda_1 = \cdots = \lambda_4 \to 1 + \frac{r}{2} \text{ (as } N \to \infty).$$

Factorization method

An approach to the complex action problem in Monte Carlo simulation.

K. N. Anagnostopoulos and J. Nishimura, hep-th/0108041,

J. Ambjorn, K. N. Anagnostopoulos, J. Nishimura and J. J. M. Verbaarschot, hep-lat/0208025.

Overlap problem: Discrepancy of a distribution function between the phase-quenched model Z_0 and the full model Z.

Force the simulation to sample the important region for the full model.

Standard reweighting method:

$$\langle \lambda_i \rangle = \frac{\langle \lambda_i \cos \Gamma \rangle_0}{\langle \cos \Gamma \rangle_0}$$
, where $\langle * \rangle_0 = (\text{ V.E.V. for the phase-quenched model } Z_0)$.

(Number of configurations required) $\simeq e^{\mathcal{O}(N^2)}$. \Rightarrow complex-action problem.

 $\tilde{\lambda}_i \stackrel{\text{def}}{=} \lambda_i / \langle \lambda_i \rangle_0$: deviation from $1 \Rightarrow$ effect of the phase.

Distribution function

$$ho_i(x) \stackrel{ ext{def}}{=} \langle \delta(x - ilde{\lambda}_i)
angle = rac{1}{C}
ho_i^{(0)}(x) w_i(x),$$

where

$$C = \langle \cos \Gamma \rangle_0, \;\;
ho_i^{(0)}(x) = \langle \delta(x - \tilde{\lambda}_i)
angle_0, \;\; w_i(x) = \langle \cos \Gamma
angle_{i,x}, \ \langle *
angle_{i,x} = [ext{V.E.V. for the partition function } Z_{i,x} = \int dA e^{-S_0} \delta(x - \tilde{\lambda}_i)].$$

Resolution of the overlap problem: The system is forced to visit the configurations where $\rho_i(x)$ is important.

In practice, we approximate the partition function $Z_{i,x}$ by

$$Z_{i,V} = \int dA e^{-S_0} e^{-V(\lambda_i)}, ext{ where } V(x) = rac{\gamma}{2} (x-\xi)^2, \quad \gamma, \xi = ext{(parameters)}.$$

Monte Carlo evaluation of $\rho_i^{(0)}(x)$ and $w_i(x)$:

$$ho_{i,V}(x) \stackrel{ ext{def}}{=} \langle \delta(x - \tilde{\lambda}_i)
angle_{i,V} \propto
ho_i^{(0)}(x) \exp(-V(\langle \lambda_i
angle_0 x)).$$

The position of the peak x_p for the distribution function $\rho_{i,V}(x)$:

$$0=rac{\partial}{\partial x}\log
ho_{i,V}(x)=f_i^{(0)}(x)-\langle\lambda_i
angle_0V'(\langle\lambda_i
angle_0x), ext{ where } f_i^{(0)}(x)\stackrel{ ext{def}}{=}rac{\partial}{\partial x}\log
ho_i^{(0)}(x).$$

- Determination of x_p : $\rho_{i,V}(x)$ has a sharp peak for large γ $\Rightarrow x_p$ is approximated as $x_p \simeq \langle \tilde{\lambda}_i \rangle_{i,V}$.
- Determination of $\rho_i^{(0)}(x)$: Vary ξ , and calculate $f_i^{(0)}(x_p)$ for different x_p . Then, evaluate $\rho_i^{(0)}(x) = \exp[\int_0^x dz f_i^{(0)}(z) + \text{const.}]$.

Why such a roundabout way? \Rightarrow to capture the skirt of $\rho_i^{(0)}(x)$.

$\left[ext{Monte Carlo evaluation of } \left\langle ilde{\lambda}_i ight angle ight]$

 $\tilde{\lambda}_i = \lambda_i / \langle \lambda_i \rangle_0$: deviation from phase-quenched model.

Direct evaluation:

$$\langle ilde{\lambda}_i
angle = \int_0^\infty dx x
ho_i(x) = rac{\int_0^\infty dx x
ho_i^{(0)}(x) w_i(x)}{\int_0^\infty dx
ho_i^{(0)}(x) w_i(x)}.$$

Difficult because $w_i(x) \simeq 0$ at large N.

The errorbar must be very small $(w_i(x) = 0.04 \pm 0.05 \text{ no longer makes sense}).$

 $w_i(x) > 0 \Rightarrow \langle \tilde{\lambda}_i \rangle$ is the minimum of $\mathcal{F}_i(x)$:

$$\mathcal{F}_i(x) = ext{(free energy density)} = -rac{1}{N^2}\log
ho_i(x).$$

We solve $\mathcal{F}'_i(x) = 0$, namely

$$rac{1}{N^2}f_i^{(0)}(x) = -rac{d}{dx}(rac{1}{N^2}\log w_i(x)).$$

Result for
$$r = N_f/N = 1$$

Result for 9th-order Gaussian expansion:

T. Okubo, J. Nishimura and F. Sugino, hep-th/0412194.

$$\tilde{\lambda}_{i=1} \simeq 1.4, \ \tilde{\lambda}_{i=2} \simeq 1.4, \ \tilde{\lambda}_{i=3} \simeq 0.7, \ \tilde{\lambda}_{i=4} \simeq 0.5.$$

Spontaneous breakdown of the rotational symmetry $SO(4) \rightarrow SO(2)$.

Quoted from Figure 4 (right) of hep-th/0412194.

Both $\frac{1}{N^2}\log w_i(x)$ and $\frac{1}{N^2}f_i^{(0)}(x)$ scale at

large N as

$$rac{1}{N^2}\log w_i(x)
ightarrow \Phi_i(x), \quad rac{1}{N^2}f_i^{(0)}(x)
ightarrow F_i(x).$$

The minimum of "free energy density" is obtained by

$$F_i(x) + \Phi'(x) = 0.$$

Fitting of $F_i(x)$:

$$F_i(x) \simeq a_{i,0} + (a_{i,1}x + rac{b_{i,1}}{x}) + \dots + (a_{i,4}x^4 + rac{b_{i,4}}{x^4}).$$

 $\Phi_{i=4}(x)$ decreases monotonously \Rightarrow One extremum of "free energy density" \Rightarrow single-peak structure of $\rho_{i=4}(x)$.

 $\Phi_i(x)$: fitted by 4-th order polynomial.

$$\langle \tilde{\lambda}_{i=4} \rangle \simeq 0.4.$$

Three extrema of "free energy density" \Rightarrow double-peak structure of $\rho_{i=3}(x)$.

o

$$x_s \simeq 0.7, \, x_l \simeq 1.2 \,\, (x_s < x_b < x_l).$$

Which peak is the higher, x_s or x_l ?

Extrapolation of $\Phi_i(x)$:

$$\Phi_i(x) \; \simeq \; egin{cases} \phi_{i,s}(x) = c_{i,0} + c_{i,1}x + \cdots + c_{i,4}x^4, & (x < x_s), \ \phi_{i,l}(x) = d_{i,0} + d_{i,1}x + \cdots + d_{i,8}x^8, & (x > x_l), \ rac{\phi_{i,s}(x)e^{-\mathcal{C}(x-lpha)} + \phi_{i,l}(x)e^{\mathcal{C}(x-lpha)}}{e^{-\mathcal{C}(x-lpha)} + e^{\mathcal{C}(x-lpha)}}, \ (x_s < x < x_l). \end{cases}$$

At $x = \alpha$, $\phi_{i,s}(x) = \phi_{i,l}(x)$.

$$\begin{array}{l} \bullet \ \ \frac{1}{N^2}(\log\rho_i(x_l)-\log\rho_i(x_b)) = \int_{x_b}^{x_l} dx (F_i(x)+\Phi_i'(x)) = (\text{A's area}). \\ \bullet \ \ \frac{1}{N^2}(\log\rho_i(x_s)-\log\rho_i(x_b)) = -\int_{x_s}^{x_b} dx (F_i(x)+\Phi_i'(x)) = (\text{B's area}). \end{array}$$

Difference of the height:

$$egin{aligned} \Delta_i &= rac{1}{N^2}(\log
ho_i(x_l) - \log
ho_i(x_s)) = (\Phi_i(x_l) - \Phi_i(x_s)) + \int_{x_s}^{x_l} dx F_i(x) \ &= ext{(A's area)-(B's area)} \simeq -0.10. \end{aligned}$$

The higher peak lies at $x_s \Rightarrow \langle \tilde{\lambda}_{i=3} \rangle \simeq 0.7$.

Three extrema of "free energy density" \Rightarrow double-peak structure of $\rho_{i=2}(x)$. $x_s \simeq 0.6, x_l \simeq 1.4 \ (x_s < x_b < x_l)$.

 $\Phi_{i=2}(x)$ is fitted similarly to $\Phi_{i=3}(x)$.

 $\Delta_{i=2} \simeq 0.12 \Rightarrow$ The higher peak lies at $x_l \Rightarrow \langle \tilde{\lambda}_{i=2} \rangle \simeq 1.4$.

 $\Phi_{i=1}(x)$ increases monotonously \Rightarrow One extremum of "free energy density" \Rightarrow single-peak structure of $\rho_{i=1}(x)$.

 $\Phi_i(x)$: fitted by 4-th order polynomial.

$$\langle \tilde{\lambda}_{i=1} \rangle \simeq 1.4.$$

VEV's $\langle \tilde{\lambda}_{i=1,2,3,4} \rangle$ are consistent with 9th order Gaussian expansion method. Spontaneous breakdown of the rotational symmetry $SO(4) \to SO(2)$.

4 Conclusion

Monte Carlo simulation of the simplified IKKT model via factorization method. Simulation of the r = 1 case \rightarrow symmetry breakdown of SO(4) to SO(2).

Future problems

• Application of the multi-canonical method to matrix models.

B. A. Berg and T. Neuhaus, hep-lat/9202004 .

Problem of factorization method: Many simulations for different ξ . Multicanonical simulation \Rightarrow We can exhaust various ξ with one simulation.

• Simulation of the 6,10-dimensional IKKT model

It costs $O(N^6)$ CPU time.

However, the effect of the phase may be milder than this simplified model.

Algorithm of Hybrid Monte Carlo (HMC) simulation

Hybrid Monte Carlo simulation \Rightarrow standard technique to incorporate fermions.

CPU cost: IKKT model (fermion is adjoint rep.) $O(N^6)$,

our simplified model (fermion is vector rep.) $O(N^3)$.

 $P_{\mu}:$ (auxiliary bosonic hermitian matrix ightarrow conjugate momentum of A_{μ})

$$egin{aligned} S_{ ext{HMC}}[P,A] &= rac{1}{2} ext{tr}\,(P_\mu^2) + S_0[A] + S_{ ext{pot},I}[A], ext{ where} \ S_0[A] &= rac{N}{2} ext{tr}\,A_\mu^2 - N_f\log|\det\mathcal{D}|, ext{ } \mathcal{D} = \Gamma_\mu A_\mu, ext{ } S_{ ext{pot},I} = rac{\gamma}{2}(\lambda_I - \xi)^2. \end{aligned}$$

1. Update $P_{\mu}(\tau=0)$ with a Gaussian random number.

Inherit $A_{\mu}(\tau=0)$ from the previous sweep.

 τ : fictitious time of the classical system $(0 \le \tau \le T)$.

2. We solve the Hamiltonian equation of motion.

$$egin{aligned} rac{d(A_{\mu})_{ij}}{d au} &= rac{\partial S_{ ext{HMC}}}{\partial (P_{\mu})_{ij}} = (P_{\mu})_{ji}, \ rac{d(P_{\mu})_{ij}}{d au} &= -rac{\partial S_{ ext{HMC}}}{\partial (A_{\mu})_{ij}} = -N(A_{\mu})_{ji} + rac{N_f}{2} \left\{ ext{Tr} (\mathcal{D}^{-1} rac{\partial \mathcal{D}}{\partial (A_{\mu})_{ij}}) + ext{Tr} (\mathcal{D}^{-1} rac{\partial \mathcal{D}}{\partial (A_{\mu})_{ji}})^*
ight\} \ &- rac{2\gamma}{N} (\lambda_I - \xi) \left(\sum_{
u=1}^4 v_{\mu}^{(I)} v_{
u}^{(I)} (A_{
u})_{ji}
ight). \end{aligned}$$

 $egin{aligned} oldsymbol{v}_{\mu}^{(I)}: ext{ eigenvector of } T_{\mu
u} = rac{1}{N} ext{tr} \left(A_{\mu}A_{
u}
ight). \ \sum_{
ho=1}^4 T_{
u
ho} v_{
ho}^{(I)} = \lambda_I v_{
u}^{(I)}, ext{ normalized as } \sum_{
u=1}^4 v_{
u}^{(I)} v_{
u}^{(I)} = 1. \end{aligned}$

3. Old configuration: $[P_{\mu}^{(\mathrm{old})},A_{\mu}^{(\mathrm{old})}]=[P_{\mu}(au=0),A_{\mu}(au=0)],$

New configuration: $[P_{\mu}^{(\mathrm{new})},A_{\mu}^{(\mathrm{new})}]=[P_{\mu}(au=T),A_{\mu}(au=T)].$

Metropolis accept/reject procedure:

Accept the new configuration with the probability $\max(1,e^{-\Delta S_{\text{HMC}}})$,

$$\Delta S_{
m HMC} = S_{
m HMC}[P_{\mu}^{
m (new)},A_{\mu}^{
m (new)}] - S_{
m HMC}[P_{\mu}^{
m (old)},A_{\mu}^{
m (old)}].$$

Leap frog discretization: We solve the discretized Hamiltonian equation of motion.

 $\Delta \tau$: step size, $T = \nu \Delta \tau$.

$$egin{aligned} (P_{\mu}^{(1/2)})_{ij} &= (P_{\mu}^{(0)})_{ij} - rac{\Delta au}{2} rac{dS_{ ext{HMC}}}{d(A_{\mu})_{ij}} (A_{\mu}^{(0)}) \;, \ &(A_{\mu}^{(1)})_{ij} &= (A_{\mu}^{(0)})_{ij} + \Delta au \, (P_{\mu}^{(1/2)})_{ji} \;, \ &(P_{\mu}^{(n+1/2)})_{ij} &= (P_{\mu}^{(n-1/2)})_{ij} - \Delta au \, rac{dS_{ ext{HMC}}}{d(A_{\mu})_{ij}} (A_{\mu}^{(n)}) \;, \ &(A_{\mu}^{(n+1)})_{ij} &= (A_{\mu}^{(n)})_{ij} + \Delta au \, (P_{\mu}^{(n+1/2)})_{ji} \;, \ &(P_{\mu}^{(
u)})_{ij} &= (P_{\mu}^{(
u-1/2)})_{ij} - rac{\Delta au}{2} rac{dS_{ ext{HMC}}}{d(A_{\mu})_{ij}} (A_{\mu}^{(
u)}) \;, \end{aligned}$$