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1 Introduction

Matrix models as a constructive definition of superstring theory'

IKKT model (IIB matrix model) = Promising candidate for the constructive defi-

nition of superstring theory.

N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, hep-th/9612115.

1/ 1 1
S = (—Ztr [A,, A% + StrgTH(A,, ¢]> .

e Dimensional reduction of N/ =1 10d Super-Yang-Mills (SYM) theory to 0d.
A, (10d vector) and ¢ (10d Majorana-Weyl spinor) are N X N matrices.

Eigenvalues of A, = spacetime coordinate.
e Matrix regularization of Green-Schwarz action of type IIB superstring theory.
e N = 2 supersymmetry in 10 dimensions.

e Matrices describe the many-body system.
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e No free parameters: A, — g2A,, Y — giy.

e Evidences for spontaneous breakdown of SO(10) symmetry to SO(4).
J. Nishimura and F. Sugino, hep-th/0111102, H. Kawai, et. al. hep-th/0204240,0211272,0602044,0603146.

e Complex action (after integrating out fermions) :

* Crucial for spontaneous breakdown of rotational symmetry:
J. Nishimura and G. Vernizzi, hep-th/0003223.

* Difficulty of Monte Carlo simulation

3
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2 Simplified IKKT model

Simplified model with spontaneous rotational symmetry breakdown,

J. Nishimura, hep-th/0108070.

N _
§ = tr A} —¢] (Tp)apAutdl

— —5
:Sb —2f

e A,: N X N hermitian matrices (u =1,--- ,4)
¢l S N-dim vector (a =1,2,f =1,--+,Ny), Ny = (number of flavors).

, 0 i , 0 1 , i 0 10
]_-‘1220'1: ,I‘2:ZO'2: ,P3:ZG3: ,P4:G4: .
1 0 -1 0 0 —z 01

e SU(IN) symmetry and SO(4) rotational symmetry.

e Partition function:

Z = /dAe_SB(det D)V = /dAe_SOeZT, where
D=T,A, = (2N X 2N matrices), e °° = e °B|det D|"/.



MC studies of the spontaneous rotational symmetry breaking in a matrix model with the complex action, Nov. 03, 16:00 ~ 17:00

Analytical studies of the modelI

Solvable at N — oo using random matrix theory (RMT) technique.

1 14+7r, (L=1,2,3
N ®
1—r, (u=4),
for small r = N;y/N.

Spontaneous breakdown of SO(4) symmetry to SO(3).
For the phase-quenched partition function Z, = | dAe 50,
(ytrA2) =14 7/2 for p=1,2,3,4.

The phase plays a crucial role in the spontaneous rotational symmetry breakdown.

Gaussian expansion analysis up to 9th order:
T. Okubo, J. Nishimura and F. Sugino, hep-th/0412194.

Spontaneous breakdown of SO(4) to SO(2) at finite r.
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3 Monte Carlo studies of the model

Brief History of the Monte Carlo simulation of large-/N reduced models'

e Simulation of bosonic Yang-Mills model T. Hotta, J. Nishimura and A. Tsuchiya, hep-th/9811220

e Simulation of bosonic Yang-Mills-Chern-Simons models
= Properties of fuzzy manifolds (fuzzy S?, S*, CP?, S?x S?).

T. Azuma, S. Bal, K. Nagao and J. Nishimura hep-th/0401038,0405096,0405277,0506205

e Simulation of finite-temperature BFSS-type (0+1)d models.

N. Kawahara, J. Nishimura and S. Takeuchi, in preparation.
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(Supersymmetric models|

Simulation of I1IB matrix model is difficult due to sign problem.

e hybrid R (or hybrid Monte Carlo) simulation of the 4d supersymmetric model
(fermion determinant is real positive, O(N*() CPU times).

J. Ambjorn, K. N. Anagnostopoulos, W. Bietenholz, T. Hotta and J. Nishimura, hep-th/0003208,
K. N. Anagnostopoulos, T. Azuma, K. Nagao and J. Nishimura, hep-th/0506062.

e hybrid Monte Carlo simulation of the one-loop effective action of the quenched
10d TIB matrix model, (O(N?) CPU time).

J. Ambjorn, K. N. Anagnostopoulos, W. Bietenholz, T. Hotta and J. Nishimura, hep-th/0005147.

Complex action plays a key role in spontaneous breakdown of Lorentz symmetry:

J. Nishimura and G. Vernizzi, hep-th/0003223.

e Factorization method to simulate a complex action system.

K. N. Anagnostopoulos and J. Nishimura, hep-th/0108041,
J. Ambjorn, K. N. Anagnostopoulos, J. Nishimura and J. J. M. Verbaarschot, hep-lat/0208025 .
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Hybrid Monte Carlo (HMC) simulation of the phase-quenched modelI

HMC simulation of the partition function Z; with the phase omitted.

Observable for probing dimensionality : 7, = +tr (A,A4,).
Ai (2=1,2,3,4) : eigenvalues of T, (A1 2> A2 2> A3 > Ay)

17 T T T T T T T 22

15 ¢ ////f 1 ////

14 _— 1 18 | —
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Results for » = i (left) and » = 1 (right), for N = 8,16, 32,64, 128.
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Factorization method'

An approach to the complex action problem in Monte Carlo simulation.

K. N. Anagnostopoulos and J. Nishimura, hep-th/0108041,
J. Ambjorn, K. N. Anagnostopoulos, J. Nishimura and J. J. M. Verbaarschot, hep-lat/0208025.

Overlap problem: Discrepancy of a distribution function between the phase-quenched

model Z; and the full model Z.

Force the simulation to sample the important region for the full model.

Standard reweighting method:

(A cosT')g
(A\) = (cosT)y where (x)o = ( V.E.V. for the phase-quenched model Z,).
cos I')g

(Number of configurations required) ~ OV, = complex-action problem.
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\; def Ai/{Ai)o: deviation from 1 = effect of the phase.

Distribution function

def

pi(z) & (5(z — 3)) = —p” (@)wi(a),

where
C = (cosT)g, p"(x) = (6(x — X))o, wi(z) = (cosT);.,,
(*);. = [V.E.V. for the partition function Z; , = /dAe_SO5(az — S\Z)]

Resolution of the overlap problem: The system is forced to visit the configurations

where p;(x) is important.
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In practice, we approximate the partition function Z;, by
Ziv = /dAe_Soe_V(Ai), where V(z) = %(az — &%, ~,¢& = (parameters).

Monte Carlo evaluation of pgo)(az) and w;(x):

def

piv(x) = (8(x — Xi))iv o pi” (x) exp(=V ({Ai)oz)).

The position of the peak x, for the distribution function p; v (x):
0

def

0= ——logpiv(z) = f(x) — AoV ((Ai)oz), where f\”(z) = 8% log p” ().

ox

e Determination of =,: p;v(x) has a sharp peak for large ~

= x, is approximated as x, ~ (5\z>z,v

e Determination of pz(-o)(az): Vary &, and calculate fi(o)(azp) for different x,.

Then, evaluate pgo)(az) = exp| [, dzfi(o)(z) + const.].

Why such a roundabout way? = to capture the skirt of pgo)(az).

11
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A\ = Ai/{Ai)o : deviation from phase-quenched model.

Direct evaluation:
0o o0 0
G = [ dapi(z) = o GETPL (@) wi()
0

I depl® (@) wi(z)

Difficult because w;(x) ~ 0 at large IN.

The errorbar must be very small (w;(z) = 0.04 & 0.05 no longer makes sense).

w;(x) > 0 = () is the minimum of F;(x):
1
Fi(x) = (free energy density) = ~NZ log p;i(x).
We solve F!(x) = 0, namely

1 d 1
ﬁJ.zi(o)(w) — _E(ﬁlog w;(x)).

12



MC studies of the spontaneous rotational symmetry breaking in a matrix model with the complex action, Nov. 03, 16:00 ~ 17:00 13

Result for r = Ny/N = 1I

Result for 9th-order Gaussian expansion:

T. Okubo, J. Nishimura and F. Sugino, hep-th/0412194.

Spontaneous breakdown of the rotational
symmetry SO(4) — SO(2).

Quoted from Figure 4 (right) of hep-th/0412194.

4
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Both - log w;(z) and %fi(o)(az) scale at
large N as

1 1
ﬁlog w;(x) = P;(x), ﬁfi(o)(az) — Fi(x).

The minimum of ”free energy density”

is obtained by

F;(z) + ®'(x) = 0.

Fitting of F;(x):

b;
2) e+ (@iazt +

xr

b;
Fi(z) ~ a;o + (ai1z + ’44).
xr
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—4(X)/ N°

log w,

®,_4(x) decreases monotonously = One extremum of ”free energy density”
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= single-peak structure of p;—4(x).

®,;(x) : fitted by 4-th order polynomial.

(Xies) ™~ 0.4.
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X
Three extrema of ”free energy density” = double-peak structure of p;—_3(x).

s >~ 0.7, 1 ~ 1.2 (s < xp < @) 00

Which peak is the higher, =, or ;7
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Extrapolation of ®;(x):

p
¢i,s(w) = ci,O —|— Ci,lw —|— e« e —|— Ci,4w4, (:L‘ < ws),

di(z) =dip+dijze + -+ -+ digz®, (x> x),

bis(x)e CE=N g, (x)eC @)
e—C(az—a)+eC(az—a) 9

\ (s < ¢ < xy).

At T = a, ¢is(x) = dii(x).

€

o —sllog pilan) — log pi(e)) = [ du(Fi(x) + #i(@) = (A’s area).

Th
Th

° %(log pi(xs) — log p;(xp)) = —/ dz(F;(z) + @.(x)) = (B’s area).

Tg

Difference of the height:

Ai = (1o pilen) — log pi(e.) = (®i(ar) — ®i(e)) + | daF(x)
= (A’s area)-(B’s area) ~ —0.10.

The higher peak lies at z, = (S\izg) ~ 0.7.

16
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_,(X)IN?

log w,

Three extrema of ”free energy density” = double-peak structure of p;—»(x).
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rs >~ 0.6, 1y ~ 1.4 (s < Tp < TY1).
®,_,(x) is fitted similarly to ®;—3(x).
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A;—2 ~ 0.12 = The higher peak lies at ; = (S\i:2) ~ 1.4.
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®,_;(x) increases monotonously = One extremum of ”free energy density”
= single-peak structure of p;—;(x).
®,;(x) : fitted by 4-th order polynomial.

(Xiz1) ~ 1.4.

VEV’s (S\i:172,3,4) are consistent with 9th order Gaussian expansion method.

Spontaneous breakdown of the rotational symmetry SO(4) — SO(2).
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4 Conclusion

Monte Carlo simulation of the simplified IKKT model via factorization method.

Simulation of the » = 1 case — symmetry breakdown of SO(4) to SO(2).

e Application of the multi-canonical method to matrix models.
B. A. Berg and T. Neuhaus, hep-lat/9202004 .
Problem of factorization method: Many simulations for different &.

Multicanonical simulation = We can exhaust various & with one simulation.

e Simulation of the 6,10-dimensional IKKT model

It costs O(N®) CPU time.
However, the effect of the phase may be milder than this simplified model.
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Algorithm of Hybrid Monte Carlo (HMC) Simulationl

Hybrid Monte Carlo simulation = standard technique to incorporate fermions.

CPU cost: IKKT model (fermion is adjoint rep.) O(IN°),
our simplified model (fermion is vector rep.) O(N?).

P, : (auxiliary bosonic hermitian matrix — conjugate momentum of A,)
1
Sumc|P, A] = Etr (Pi) + So[A] 4 Spot,1|A], where

N
So[A] = —trA

~
9 Z — Ny log |det D|, D = LpAu,  Spot,y = 5()\1 — €)2

1. Update P,(7 = 0) with a Gaussian random number.
Inherit A, (7 = 0) from the previous sweep.

7: fictitious time of the classical system (0 < 7 < T).
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2. We solve the Hamiltonian equation of motion.

d(Au)zg o 8‘S’Hl\/IC

= = (P,)ii,
d(P,);; 8 Sknc N 8D 8D
(Pu)ij _ _9%mmc _ —N(A,);i + —L {Tr(D_l ) + Tr(D™* )*}
dr a(A[I)ZJ 2 a(All)lJ a(All)Jl

2 4
—%(AI — &) (Z:l U,(,{)U,(,I)(Au)ji> -
vy) : eigenvector of T, = ~tr (A,A,).
Zizl T,,pvl()I) = Ao normalized as > )_, v(DolD = 1.
3. Old configuration: [P,S‘)ld), Affld)] = [Pu,(T = 0), A, (T = 0)],
New configuration: [P’Snew), AS‘QW)] =[P (T =T),A, (T =T)].
Metropolis accept/reject procedure:

Accept the new configuration with the probability max(l,e_ASHMC),

ASuMvc = SHMC[P’SHEW),ALneW)] . SHMC[P,EOld),ALOld)].

21
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Leap frog discretization: We solve the discretized Hamiltonian equation of motion.

AT: step size, T = vAT.

PH T=AT2 1=3AT/2 =S AT  t=(v-12) A

O

=(v-2) At T= (v-1) At

1=V AT

T=v AT

AT dSHMC

p/2) o= PO io— A0
( u ).7 ( 7 ).7 2 d(A“)ZJ( p,)’
(AD)i; = (AD)ij + AT (P) i
n " dSumc |, ,(n
(PHD); = (P12); — Ar ——E (AD)
d(Ag)ij
(AD) = (AM)y 4+ Ar (P2
v v AT dSHMC v
(PM)ij = (PU1P)5 — Ay,

2 d(Au)ij



