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1 Introduction

Large-N reduced models

— promising candidates for the constructive definition of superstring theory.

The IIB matrix model'

N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, hep-th/9612115

1 1 o, 1o,
S = —;tr (Z[AmAV] + §¢F [A“,tb]) ‘

Relation with the type IIB superstring theory:

e Matrix regularization of the Green-Schwarz action of type IIB superstring theory.
e D-brane interaction.

® Derivation of the string field theory.



Dynamical generation of gauge groups in the massive YMCS matrix model , Takehiro Azuma, Jun. 1, 16:00 ~

[Matrix models on a homogeneous space}

Motivations of fuzzy manifold studies:

e Relation between the non-commutative field theory and the superstring.

e Novel regularization scheme alternative to lattice regularization.

e Prototype of the curved-space background in the large-IN reduced models.
Matrix models on a homogeneous space G/ H':

G= (a Lie group), H = (a closed subgroup of G).

S? = SU(2)/U(1), S% x 82, S* = SO(5)/U(2), CP? = SU(3)/U(2), - --.

Fuzzy spheres are compact = realized by finite matrices.

The Yang-Mills-Chern-Simons (YMCS) model = fuzzy sphere background.
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2 The model and its classical solution

3d massive Yang-Mills-Chern-Simons model

= a toy model with fuzzy sphere solutions:

4 1 2, 20 P’y
S[A] = Nao“tr —Z[Au, Ay] + QGNVPANAVAP + EAP’ .

e Defined in the 3-dimensional Euclidean space (u,v, p = 1,2, 3).

e Convergence of the path integral p. Austing and J. F. Wheater, hep-th/0310170.

(mass term just suppresses the path integral)

e Classical equation of motion:

_[Aw [Auv Au]] + 1 €uv [Aua A)\] + pzAu = 0.
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Fuzzy sphere classical solution:

LLn1)®1k1 X:%(1_|_ V1 — 2p?),

Aﬂ = X” =X T, ’ where Zf:l nzkz = N,
s 1
L) @ 1, 0<p< 7

° LL"): n X n representation of SU(2) Lie algebra:

(LM, LIV] = i€, LY, (L) =
e Collection of k; coincident fuzzy spheres.
e Expansion around this solution = U(k;) x U(kz) X --- X U(k,) gauge theory.

e A, = 0 solution = s =1, n; =1, k; = N.

e Classical free energy:

N

4 s
F, =S, = 2Z F(x) (Z ki(n} — nz)) ; where f(x) =
i=1

X' 2 | Px
2
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3 Review of the massless (p = 0) case
Yang-Mills phase

T. Azuma, S. Bal, K. Nagao and J. Nishimura, hep-th/0401038.

VX2
First-order phase transition' / S
Q%g%ﬁ%&)
Monte Carlo simulation launched from fuzzy O O .
| )m
sphere classical solution:
iti - ~ 21
Critical point at o, ~ Nk
® a < ag: Yang-Mills phase Fuzzy sphere phase

| x
Strong quantum effects. ® O
behavior like the o« = 0 case.

T. Hotta, J. Nishimura and A. Tsuchiya, hep-th/9811220, D 5
® & > o fuzzy sphere phase. Q 0%
.. oY
Fuzzy sphere configuration is stable. Q )OO
O
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Phase transition from the one-loop effective action'

The effective action I' is saturated at

the one-loop level at large IN.

T. Imai, Y. Kitazawa, Y. Takayama and D. Tomino, hep-th/0307007.

Effective action at one-loop around
A, =tX, (where & = av/ N).

I‘l—loop ~4 <t4 t3)
~a | — — — log t.
N? s ¢) T8

The local minimum disappears at

& < G = (8)1~2.086--.
Consistent with the Monte Carlo simu-

lation.
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Properties of the multi-fuzzy spheres'

Expansion around k coincide fuzzy spheres A, = X, + A,, where
X, =L ® 1.

Quantum field theory with U(k) gauge group.
Realized by the finite N = nk matrices.
Simulation from zero start ALO) =0 for N =16, a = 2.0.

Metastability of multi-fuzzy-sphere state.

I, (6—5—4—3—2—1) 0

ALO):O—>---—>A“= o —

———— 0 L(10—>11—>12—>13—>14—>15)
7

- >4
~~
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Calculation of the free energy
W = —log (f dfie_s) .

Eigenvalues of Casimir operator
Q = o*(A? + A3 + A2).

k = 1 has the lowest free energy to all
order of perturbation.

T. Azuma, K. Nagao and J. Nishimura, hep-th/0410263.
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Attempts for other models'

Extension to the models with other fuzzy sphere solution:
e Fuzzy S? sphere (hep-th/0405096) No fuzzy S* phase.

e Fuzzy CP? manifold (hep-th/0405277).

e Fuzzy S?x S? sphere.

e Supersymmetric 4d YMCS model with fuzzy S? solution.

In these cases (except S*), U(1) gauge group is favored.

10
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4 Dynamical generation of gauge group

One-loop free energy:

F = F, —log(vol(H)YNA(X,)Z).
:F;:IOOp
Perturbation around the fuzzy sphere solution A, = X, + A,
—> flat directions corresponding to the transformation:

A, — Af = gA,g', where g € H = U(N)/ HU(kz)

=1

11



Dynamical generation of gauge groups in the massive YMCS matrix model , Takehiro Azuma, Jun. 1, 16:00 ~ 12

e vol(H ): gauge volume for the coset space H.
vol(U(N))
(IT;=; vol(U(k:)))

(27.‘.)n(n—|—1)/2

vol(H) = (n—1)!-.-110!"

, where vol(n) =

o N = (J\;—f)%{N2—Zf:1(ki)2}.

e A(X,): Faddeev-Popov determinant for the gauge fixing.
s 1 (nitnj)/2—-1

AX) = 11 11,y DEUE+ DIFEEED.
=|n;—n;

1,=1

(IT = 1 = 0 is excluded).

e Z: integration over the fluctuation A,,.
Gauge fixing term: S, = —%Na‘ltr[Xu, ALl
1 ~ ~
Siot = S+ Sgr. = Sa + 5J\ro/*tr(A,,,QWA,,), where
Qv = {X* (LX) + p"}0u — ipeunly, LM = [Ly, M].

Eigenvalue problem QWA,, = )‘Au-

K. Dasgupta, M. M. Sheikh-Jabbari and M. Van Raamsdonk, hep-th/0205185.
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For n; X n; blocks, (Au)n,;an = Z(ni+nj)/2_1 Z,lm:_l Ag’m)ﬂ, m).

I=|n;—n;|/2
(L1 xilo)[l,m) = /Il +1) —m(m £ 1)[l,m+1).

Eigenvalue equation for each block:

{A = p*(1 — m)}AL™ = p?_A{™ Y,

{A—p*(1+ m)}A" ™ = —p ASJ””*” :

{A — p2YAL™ = —p 20, AT —p_A%"Y) | where
AlLm™ = Abm 4 Ag ™A =X— (1 +1).

Three eigenvalues for | > % (1 = 0 — X = p? with 3-fold degeneracy):

M=xA0+1), Q=x0+1) —pl A =X+ 1)+ o0+ 1),

2l + 1 degeneracy 2l — 1 degeneracy 2l 4+ 3 degeneracy

Final result:
2 3 N2 8 , s

y (nt+m)/2—-1 - ziZI

Hl:|n_m|/2 [A?H—lAgl—l)\gH—?)]

DN b=t
.

dnm
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p < % regimeI

Single (s = 1,n; = N, k; = 1) fuzzy sphere A, = XLLN) = F, = —0(a*N*?) < 0.

— Coincident fuzzy spheres cannot be the true vacuum.

Free energy for single fuzzy sphere:

Frs _ N7o ° Jog N + 41 5(p), wh
N7 = 2 f(x)—|—§og + 4loga — o(p), where
4 3 2.2
X" 2xX7 | pXT < < 2
f(X):?— 3 + 2 (;Oforpgg).

Free energy in the Yang-Mills phase (based on Gaussian expansion)

J. Nishimura, T. Okubo and F. Sugino, hep-th/0205253.

Fym 3
N _ElogN—|—310ga—|— v -
~—4.5
1/4
. . . 1 2log N
Critical point: o = VN ( |f(x)|)

o v < oy — Fyy < Frs: Yang-Mills phase

o & > . — Fyy > Fps: single fuzzy sphere



Dynamical generation of gauge groups in the massive YMCS matrix model , Takehiro Azuma, Jun. 1, 16:00 ~ 15

p > % regime

wiN

ﬁc; = 3 f(x) Cis ri(n? —n;)) >0 (r; = %, so that > °_ n;,r; = 1) and

Fl;;"’p — %logN 4+ O(1).

The stable fuzzy sphere should have lower free energy than Fs—y = 2 log N + O(1).

The stable fuzzy sphere should satisfy n; = O(1), k; = ;N = O(N).

U(k;) gauge group (k; = O(INV)) is dynamically generated.

Analogous to coincident transverse 5-branes in M-theory.

J. Maldacena, M. M. Sheikh-Jabbari and M. Van Raamsdonk, hep-th/0211139.
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[Rough estimate at large a}

T lat0 Y nin? o) + 2ioga 3 ()’

2
N h'\/'—/'Ll — i=1

Minimize this free energy under > ., n;r; = 1.

™= op [An; — A(n? — n;)|, where

1 S
A== |2B+A) (n{—n
Z'f:l n? i=1 ' '
For brevity, n, = 1,15, = 2, n3 = 3,-++ , N, = s.
Condition r; > 0 = s(s? — 1)(4s* — 1) < GOB = 422}(@;)‘).

e Large a = Only s =1 is possible = A, = 0 is favored.

e s = 2 (2 X 2 spheres) appears at % = %

16
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[General analysis at moderate a]

r;’s that minimize the free energy at

17

Comparison of free energy with Yang-

Mills phase at p = 0.7.

p = 0.7.
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The Yang-Mills phase takes over at
a~ 0(1).
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Phase diagram'

142
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5 Conclusion

Massive Yang-Mills-Chern-Simons model:
Many local minima with different gauge groups.

A nice laboratory for testing ideas and methods to study superstring theory by ma-

trix models.

In this work, we have found

Dynamical generation of nontrivial gauge group.l

The road to deriving the SU(3) x SU(2) x U(1) gauge group from the large-IN

reduced model?



