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• Simulating  Lattice gauge theories 
• Local gauge invariance from microscopic physics  
• Examples:  Abelian (cQED),  Non Abelian (YM SU(2)) ,      . 

 
• outlook. 





QUANTUM ANALOG SIMULATION 
 



QUANTUM ANALOG SIMULATION 
 



SIMULATED PHYSICS 

 

• Condensed matter  

     ( e.g. for  testing model for high TC superconductivity) 
    
      

 Hubbard and spin models 
 External (classical)  artificial gauge potential 
      Abelian/non-Abelian.  

 



SIMULATED PHYSICS 

 

• Gravity:   BH, Hawking/Unruh,  cosmological  effects ..  

 

Horstman, BR, Fagnocchi,  Cirac, PRL  (2010) 

Discrete version of a black hole 



SIMULATED PHYSICS 

  

      High Energy physics (HEP)? 
 



SIMULATING SYSTEMS 

• Bose Eienstein Condensates 
• Atoms in optical lattices 
• Rydberg Atoms  
• Trapped Ions 
• Superconducting devices 
• … 
 



COLD ATOMS 



COLD ATOMS  
OPTICAL LATTICES 

Laser Standing waves:  dipole trapping 



COLD ATOMS  
OPTICAL LATTICES 

In the presence  𝑬 𝑟, 𝑡  the atoms has a time dependent dipole moment  
𝑑 𝑡 = 𝛼 𝜔  𝑬 𝑟, 𝑡   of some non resonant excited states.  
Stark effect: 
 

V r ≡ ΔE r = 𝛼 𝜔 〈 𝑬 𝑟  𝑬 𝑟 〉/𝛿 
 

𝛿 
Atom  



COLD ATOMS  
OPTICAL LATTICES 

s 

 Superfluid to  Mott insulator,  phase transition  (I. Bloch) 





“Super lattice!” 

Resolved (hyperfine levels)  
potentials 
  

Spatial direction  



THE STANDARD MODEL: CONTENTS 

Matter Particles: Fermions 

Quarks and Leptons: 

Mass, Spin, Flavor 

 

Coupled by force Carriers / Gauge bosons, 

Massless, chargeless photon (1): Electromagnetic, U(1)  

Massive, charged Z, W’s (3): Weak interactions, SU(2) 

Massless, charged Gluons (8):  Strong interactions, SU(3) 



GAUGE FIELDS 

Abelian Fields 
Maxwell theory 

Non-Abelian fields 
Yang-Mills theory 

Massless Massless 

Long-range forces Confinement 

Chargeless Carry charge 

Linear dynamics Self interacting & NL 



                𝛼𝑄𝐸𝐷 ≪ 1,      𝑉𝑄𝐸𝐷 𝑟 ∝
1

𝑟
 

 

We (ordinarily) don’t need second quantization and quantum 
field theory to understand the structure of atoms:  

 
𝑚𝑒𝑐
2 ≫ 𝐸𝑅𝑦𝑑𝑏𝑒𝑟𝑔 ≃ 𝛼𝑄𝐸𝐷

2  𝑚𝑒𝑐
2 

 

Also in higher energies (scattering, fine structure corrections), 
where QFT is required, perturbation theory 
(Feynman diagrams) works well. 

 

                               

QED: THE CONVENIENCE OF BEING ABELIAN 



 

e.g. , the anomalous electron magnetic moment: 

                              

…+ 

+ +… 

891 vertex diagrams 

(g-2)/2= …. 

CALCULATE! 



…+ 

12672 self energy diagrams 

 (g-2)/2= 1 159 652 180.73 (0.28) × 10−12 

 
g − 2 measurement by the Harvard Group using a  Penning trap 

T. Aoyama et. al. Prog. Theor. Exp. Phys. 2012, 01A107  



THE LOW ENERGY PHYSICS OF HIGH ENERGY PHYSICS, 
 OR THE DARK SIDE OF ASYMPTOTIC FREEDOM 

 

𝛼𝑄𝐶𝐷 > 1 ,  𝑉𝑄𝐶𝐷 𝑟 ∝ 𝑟  
 

non-perturbative  confinement effect! 

No free quraks: they construct Hadrons: 

Mesons (two quarks), 

Baryons (three quarks), 

… 
Color Electric flux-tubes:  

“a non-abelian Meissner effect”. 

 
r 

V(r) 
Static pot. 
for a pair 
of heavy 
quarks 

Coulomb 
 

Confinement 
 

Q Q 

Q Q 

ASYMPTOTIC FREEDOM 



THE LOW ENERGY PHYSICS OF HIGH ENERGY PHYSICS, 
OR THE DARK SIDE OF ASYMPTOTIC FREEDOM 

 

𝛼𝑄𝐶𝐷 > 1 ,  𝑉𝑄𝐶𝐷 𝑟 ∝ 𝑟  
 

non-perturbative  confinement effect! 

No free quraks: they construct Hadrons: 

Mesons (two quarks), 

Baryons (three quarks), 

… 
Color Electric flux-tubes:  

“a non-abelian Meissner effect”. 

 

Shut up and Calculate! 

r 

V(r) 
Static pot. 
for a pair 
of heavy 
quarks 

Coulomb 
 

Confinement 
 

Q Q 

Q Q 



Compared with CM simulations, several additional  
requirements when trying to simulate HEP models 



REQUIREMENT  1 

 

One needs both bosons and fermions 

 

Fermion fields : = Matter 

Bosonic, Gauge fields:= Interaction mediators 

 
 

 
Ultracold atoms: 
One can have  bosonic 
and fermionic species 



REQUIREMENT 2 

The theory has to be relativistic = have a causal 
structure. 

 

The atomic dynamics (and Hamiltonian) is nonrelativistic. 

 

 

 
We can use lattice gauge theory. 
The continuum limit will be then relativistic. 



 REQUIREMENT 3 

The theory has to be local gauge invariant. 

local gauge invariance = “charge” conservation 

 

 Atomic Hamiltonian conserves total number – seem to have only 
global symmetry 

 

 

 

 
 

 

It turns out that local gauge invariance can be obtained 
 as either : 
I)– a low energy approximate symmetry.  
II)– or “fundamentally”   from symmetries of  atomic 
      interactions. 
        



LATTICE GAUGE THEORY 

• A very useful nonperturbative approach to gauge theories, 
especially QCD. 

• Lattice partition and correlation functions computed using 
Monte Carlo methods in a discretized Euclidean spacetime 
(Wilson). 

 

• However: 
Limited applicability with too many quarks / finite chemical 
potential (quark-gluon plasma, color superconductivity): 
Grassman integration  the computationally hard “sign 
problem”  

• Euclidean correlations – No real time dynamics 

 



LATTICE GAUGE THEORIES 
HAMILTONIAN FORMULATION 



Gauge field degrees of freedom: 
U(1), SU(N), etc, unitary matrices  

LATTICE GAUGE THEORIES 
DEGREES OF FREEDOM  

   LINKS 

Matter degrees of freedom : 
Spinors 

  VERTICES 



Generators: 
 
 
 
 

Gauge transformation: 

Gauge group elements: 

Ur is an element of the gauge group (in the representation r), 
on each link  
 
Left and right generators: 
 
 
 
 

Gauge fields on the links 

  [J, m, m’i 

Dynamical! 

Left and right “electric” fields  



Matter dynamics: 

Gauge field dynamics (Kogut-Susskind Hamiltonian): 

 
 
 
 

Strong coupling limit: g >> 1 
Weak coupling limit: g << 1 

 

LATTICE GAUGE THEORIES 
NON-ABELIAN HAMILTONIAN 

Local gauge invariance: acting on a single vertex 



Local Gauge invariance 

 A symmetry that is satisfied  for each link separately 



Example 
compact – QED (cQED) 



  U(1) gauge theory 

𝐻 = 𝑀𝑛𝜓𝑛
†𝜓𝑛

𝑛

+ 𝛼𝑛 𝜓𝑛
†𝜓𝑛+1 +𝐻. 𝑐.  

Start with a hopping fermionic Hamiltonian, in 1 
spatial direction 

This Hamiltonian is invariant to global gauge 
transformations, 

𝜓𝑛⟶ 𝑒
−𝑖Λ𝜓𝑛    ;     𝜓𝑛

†⟶ 𝑒𝑖Λ𝜓𝑛
† 



  U(1) gauge theory 

𝐻 = 𝑀𝑛𝜓𝑛
†𝜓𝑛

𝑛

+ 𝛼𝑛 𝜓𝑛
†𝑈𝑛𝜓𝑛+1 +𝐻. 𝑐.  

Promote the gauge transformation to be local: 

Then, in order to make the Hamiltonian gauge 
invariant, add unitary operators, 𝑈𝑛,  

𝜓𝑛⟶ 𝑒
−𝑖Λ𝑛𝜓𝑛    ;     𝜓𝑛

†⟶ 𝑒𝑖Λ𝑛𝜓𝑛
† 

𝑈𝑛 = 𝑒
𝑖𝜃𝑛     ;      𝜃𝑛⟶  𝜃𝑛+  Λ𝑛+1 -   Λ𝑛 



 Dynamics 

Add dynamics to the gauge field: 

 𝐿𝑛
  is the angular momentum operator conjugate to 
  𝜃𝑛 , representing the (integer) electric field.    

𝐻𝐸 =
𝑔2

2
 𝐿𝑛,𝑧

2

𝑛

 



Plaquette 

 

In d>1 spatial dimensions, interaction 
terms along plaquettes  

 
 

 
 
 

In the continuum limit, this corresponds to 
𝛻 × 𝑨 2 - gauge invariant magnetic 

energy term. 
 

 
 

− 1
𝑔2
 cos 𝜃𝑚,𝑛

1 + 𝜃𝑚+1,𝑛
2 − 𝜃𝑚,𝑛+1

1 − 𝜃𝑚,𝑛
2

𝑚,𝑛

 

Figure from ref [6] 



cQED -> QED 

+ + 

E is quantized! = Lz 
𝛻 × 𝑨 2 

J¢ A      Gauge-Matter interaction 

plaquette 



 End  
Example  (cQED) 

Next: we move on to atomic lattices 



QUANTUM SIMULATION 
COLD ATOMS 

 Fermion matter fields 

 Bosonic gauge fields 

 

 

 Superlattices: 

  

 

 

Atom internal levels 



QUANTUM SIMULATION 
LOCAL GAUGE INVARIANCE 

• Generators of gauge transformations: 

… 

…
 

Sector w. fixed  
charge  



QUANTUM SIMULATION 
LOCAL GAUGE INVARIANCE 

• Generators of gauge transformations: 

… 

…
 



QUANTUM SIMULATION 
LOCAL GAUGE INVARIANCE 

• Generators of gauge transformations: 

… 

…
 



QUANTUM SIMULATION 
LOCAL GAUGE INVARIANCE 

• Generators of gauge transformations: 

… 

…
 

 local gauge invariance!! 



Local Gauge Invariance 
at low enough energies 

Gauss’s law is added as a constraint.  

Leaving the gauge invariant sector of Hilbert space costs too much Energy. 

 

 

Low energy effective gauge invariant  Hamiltonian. 
 

E. Zohar, BR,   Phys. Rev. Lett. 107, 275301 (2011)  
 

Δ ≫ 𝛿𝐸 

…
 

..
 

𝛿𝐸 

Gauge invariant sector 

Not Gauge invariant 



LGI  is exact : emerging from some microscopic symmetries 

 

 

 
• Links   atomic scattering : gauge invariance  is a fundamental symmetry 

 

 

 

 
• Plaquettes  gauge invariant links  virtual loops of ancillary fermions. 

 



GLOBAL GAUGE INVRAIANT = FERMION HOPPING 

F F 



GLOBAL GAUGE INVRAIANT = FERMION HOPPING 



GLOBAL GAUGE INVRAIANT = FERMION HOPPING 



LOCAL GAUGE INVARIANCE:  ADD A MEDIATOR ! 



EXAMPLE – cQED 
LINK INTERACTIONS 

F F B 



C D 

A,B 

F 

EXAMPLE – cQED LINK INTERACTIONS 
LOCAL GAUGE INVARIANCE: ADD A MEDIATOR 



C D 

A,B 

𝐿 → 𝐿 − 1  

F 

EXAMPLE – cQED 
LINK INTERACTIONS 



C D 

A,B 

𝐿 → 𝐿 + 1  

F 

EXAMPLE – cQED 
LINK INTERACTIONS 



Fermionic atoms Bosonic atoms 

(HYPERFINE) ANGULAR MOMENTUM CONSERVATION 
ATOMIC SCATTERING 

t 
 

𝜓 

Φ 

Hyperfine angular momentum conservation 
in atomic scattering.  



ANG. MOM. CONSERVATION  LOCAL GAUGE INVARIANCE 

C D 

A,B 

mF (C) 

mF (D) 

mF (A) 

mF (B) 



ANG. MOM. CONSERVATION  LOCAL GAUGE INVARIANCE 

C D 

A,B 

mF (C) 

mF (D) 

mF (A) 

mF (B) 



ANG. MOM. CONSERVATION  LOCAL GAUGE INVARIANCE 

C D 

A,B 

mF (C) 

mF (D) 

mF (A) 

mF (B) 



GAUGE BOSONS: SCHWINGER’S ALGEBRA 

and thus what we have is 



GAUGE BOSONS: SCHWINGER’S ALGEBRA 

and thus what we have is 



GAUGE BOSONS: SCHWINGER’S ALGEBRA 

Qualitatively similar results can be obtained with just two bosons on the link, 
as the U(1) gauge symmetry is     -independent.  

 

For large       , 



 
PLAQUETTES 



PLAQUETTES 

 
1d elementary link interactions  are already gauge invariant 

 

 

Auxiliary fermions  

         := 



PLAQUETTES 

 

 
Auxiliary fermions 

– virtual processes 



PLAQUETTES 

 

 
Auxiliary fermions 

– virtual processes 



PLAQUETTES 

 

 
Auxiliary fermions 

– virtual processes 

- plaquettes. 

          discrete,  abelian  
           & non-abelian   
              groups 
 



cQED U(1) PLAQUETTES 

𝜆  is the “energy penalty” of the auxiliary fermion 
𝜖 is the “link tunneling energy”. 
 
Only even orders contribute:  effectively a second order process. 



NON ABELIAN MODELS 
YANG MILLS 



Generators: 
 
 
 
 

Gauge transformation: 

Gauge group elements: 

Ur is an element of the gauge group (in the representation r), 
on each link  
 
Left and right generators: 
 
 
 
 

LATTICE GAUGE THEORIES 
HAMILTONIAN FORMULATION 

  [J, m, m’i 

Dynamical! 

Left and right “electric” fields  



SCHWINGER REPRESENTATION:   SU(2)  
PRE-POTENTIAL  APPROACH 

On each link – a1,2 bosons on the left, b1,2 bosons on the right 

In the fundamental representation -  



SCHWINGER REPRESENTATION:   SU(2)  
REALIZATION 

Ancillary “constraint” Fermion 

On each link – a1,2 bosons on the left, b1,2 bosons on the right 

 “color” fermions 



EXAMPLE: SU(2) IN 1+1 

Fermions L & R “gauge” bosons 

Superlattices 



EXAMPLE: SU(2) IN 2+1 

Non-abelian “charge” 
Encoded in the relative 
Rotation between R and L 
(“space and body frames” 
of a rigid rotator) 



FIRST STEPS 

• Confinement in  Abelian lattice models 
 

• Toy models with “QCD-like  properties” that 
capture the essential physics of confinement. 



CONFINEMENT  
 Abelian TOY MODELS 

• 1+1D:  Schwinger’s model.   
 

• cQED:   2+1D: no phase transition  
     Instantons give rise to confinement  at 𝑔 < 1  (Polyakov). 
     (For T > 0: there is a phase transition also in 2+1D.) 

 
• cQED:  3+1D:  phase transition between a strong coupling  

confining phase, and a weak coupling  coulomb phase.  
 

• Z(N):   for N ≥ 𝑁𝑐:    Three phases:   electric confinement,      
  magnetic confinement, and non confinement. 

 



LATTICE FERMIONS 

• “Naïve” discretization of the Dirac field leads, in 
the continuum limit, to doubling of the fermionic 
species (double zeros in the fermionic Brillouin 
zone). 

• There are several methods to solve this problem: 
Wilson fermions, Staggered (Kogut-Susskind) 
fermions, Domain- Wall fermions, … 

• No-Go theorem (Nielsen and Ninomiya): any 
Hermitean, local and translationally invariant 
lattice theory leads to fermion doubling. 

• Nice side effect: the chiral anomaly is cancelled. 



STAGGERED (KOGUT-SUSSKIND) FERMIONS 

• Doubling resolved by breaking translational 
invariance (in a very special manner). 

• Each continuum spinor is constructed out of 
several lattice sites (depenging on the gauge 
group and the dimension). 

• Continuum limit: Dirac field. 

 



+ 

STAGGERED (KOGUT-SUSSKIND) FERMIONS IN 1+1d 
– MASS AND CHARGE 

• The Hamiltonian: 
 
 

• Charge:  
 

• Mass is measured relatively to   
 

• Even n – particles: Q=N 
– 0 atoms: zero mass, zero charge 
– 1 atom: M, Q=1 

• Odd n – anti-patrticles: Q=N-1 
– 1 atom: zero mass, zero charge (“Dirac sea”) 
– 0 atoms: mass M (relative to –M), charge Q=-1 

 

  † 1
1 1

2

n

n n nQ     

  1 1
n

M  



QUANTUM SIMULATION 
DYNAMICAL FERMIONS 1+1 



QUANTUM SIMULATION 
SCHWINGER MODEL 1+1 



STAGGERED (KOGUT-SUSSKIND) FERMIONS IN 1+1d – 
ELECTRIC FLUX TUBES, l = 1 

Na 1 

Nb 1 

Lz = ½(Na-Nb) 0 

l = ½(Na+Nb) 1 

Na 1 

Nb 1 

Lz = ½(Nb-Na) 0 

l = ½(Na+Nb) 1 

Na 1 

Nb 1 

Lz = ½(Na-Nb) 0 

l = ½(Na+Nb) 1 

Nc 0 

m 0 

Q 0 

Nd 1 

m 0 

Q 0 

Nc 0 

m 0 

Q 0 

Nd 1 

m 0 

Q 0 

Dirac Sea 



STAGGERED (KOGUT-SUSSKIND) FERMIONS IN 1+1d – 
ELECTRIC FLUX TUBES, l = 1 

Na 1 

Nb 1 

Lz = ½(Na-Nb) 0 

l = ½(Na+Nb) 1 

Na 1 

Nb 1 

Lz = ½(Nb-Na) 0 

l = ½(Na+Nb) 1 

Na 1 

Nb 1 

Lz = ½(Na-Nb) 0 

l = ½(Na+Nb) 1 

Nc 0 

m 0 

Q 0 

Nd 1 

m 0 

Q 0 

Nc 0 

m 0 

Q 0 

Nd 1 

m 0 

Q 0 

Act with 



STAGGERED (KOGUT-SUSSKIND) FERMIONS IN 1+1d – 
ELECTRIC FLUX TUBES, l = 1 

Na 2 

Nb 0 

Lz = ½(Na-Nb) +1 

l = ½(Na+Nb) 1 

Na 1 

Nb 1 

Lz = ½(Nb-Na) 0 

l = ½(Na+Nb) 1 

Na 2 

Nb 0 

Lz = ½(Na-Nb) +1 

l = ½(Na+Nb) 1 

Nc 1 

m M 

Q +1 

Nd 0 

m M 

Q -1 

Nc 1 

m M 

Q +1 

Nd 0 

m M 

Q -1 

Two “mesons” (Flux tubes) 

q q q q 



STAGGERED (KOGUT-SUSSKIND) FERMIONS IN 1+1d – 
ELECTRIC FLUX TUBES, l = 1 

Na 2 

Nb 0 

Lz = ½(Na-Nb) +1 

l = ½(Na+Nb) 1 

Na 1 

Nb 1 

Lz = ½(Nb-Na) 0 

l = ½(Na+Nb) 1 

Na 2 

Nb 0 

Lz = ½(Na-Nb) +1 

l = ½(Na+Nb) 1 

Nc 1 

m M 

Q +1 

Nd 0 

m M 

Q -1 

Nc 1 

m M 

Q +1 

Nd 0 

m M 

Q -1 

Act with 

q q q q 



STAGGERED (KOGUT-SUSSKIND) FERMIONS IN 1+1d – 
ELECTRIC FLUX TUBES, l = 1 

Na 2 

Nb 0 

Lz = ½(Na-Nb) +1 

l = ½(Na+Nb) 1 

Na 0 

Nb 2 

Lz = ½(Nb-Na) 1 

l = ½(Na+Nb) 1 

Na 2 

Nb 0 

Lz = ½(Na-Nb) +1 

l = ½(Na+Nb) 1 

Nc 1 

m M 

Q +1 

Nd 1 

m 0 

Q 0 

Nc 0 

m 0 

Q 0 

Nd 0 

m M 

Q -1 

Longer meson 

q q 



Confinement, flux breaking & glueballs 

Flux loops deforming  and breaking effects 

Electric flux tubes 

E. Zohar, BR,  
Phys. Rev. Lett. 107, 275301 (2011). 

E. Zohar, J. I. Cirac, BR,  
Phys. Rev. Lett. 110, 055302 (2013)  
 



WILSON LOOP MEASUREMENTS 

Detecting Wilson Loop’s area law by 
          interference of “Mesons”. 

This is equivalent to Ramsey Spectroscopy in quantum optics!  

E. Zohar , BR, New J. Phys. 15 (2013) 043041 
 

Stationary “quark” 

Two-path interfering “quark” 

“Erea law” dependence 
Confining phase  



OUTLOOK 

Decoherence,  superlattices, scattering parameters control… 

cQED 
Non-

Abelian 

cQED ZN 

Non-
Abelian 

? 

“Proof of principle” 1+1 toy models  
Numerical comparison with DMRG 

Plaquettes in  2+1 and 3+1 
Abelian , cQED and Z(N)   

  

Non Abelian in Higher Dimensions  



SUMMARY 

 

Lattice gauge theories can be mapped to 
an analog cold atom simulator. 

 

 

 

Atomic conservation laws can give rise 
to exact local gauge symmetry. 

 

 

Near future experiments may be able 
to realize first steps in this direction,  
and offer a new types of LGT simulations. 

 

 

Weitenberg et. al., Nature, 2011 



THANK YOU! 

 

Lattice gauge theories can be mapped to 
an analog cold atom simulator. 

 

 

 

Atomic conservation laws can give rise 
to exact local gauge symmetry. 

 

 

Near future experiments may be able 
to realize first steps in this direction,  
and offer a new types of LGT simulations. 

 

 

Weitenberg et. al., Nature, 2011 
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Experimental progress 



QUANTUM SIMULATIONS 
COLD ATOMS – EXPERIMENTS 
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