Entanglement Behavior of 2D Quantum Models

Shu Tanaka（YITP，Kyoto University）

Collaborators：

Hosho Katsura（Univ．of Tokyo，Japan） Anatol N．Kirillov（RIMS，Kyoto Univ．，Japan） Vladimir E．Korepin（YITP，Stony Brook，USA） Naoki Kawashima（ISSP，Univ．of Tokyo，Japan） Lou Jie（Fudan Univ．，China）
Ryo Tamura（NIMS，Japan）


```
VBS on symmetric graphs，J．Phys．A，43， 255303 （2010）
＂VBS／CFT correspondence＂，Phys．Rev．B，84， 245128 （2011）
Quantum hard－square model，Phys．Rev．A，86， 032326 （2012）
Nested entanglement entropy，Interdisciplinary Information Sciences，19， 101 （2013）
```


Digest

Entanglement properties of 2D quantum systems

VBS on hexagonal lattice

Physical properties of 1D quantum systems

Quantum lattice gas on ladder

Volume exclusion effect

Quantum lattice gas on ladder

Total system	Entanglement Hamiltonian
Square ladder	2D Ising
Triangle ladder	2D 3-state Potts

Introduction

- Entanglement
- Motivation
- Preliminaries

Introduction

$E E$ is a measure to quantify entanglement.

Schmidt decomposition

$$
|\Psi\rangle=\sum_{\alpha} \lambda_{\alpha}\left|\phi_{\alpha}^{[\mathrm{A}]}\right\rangle \otimes\left|\phi_{\alpha}^{[\mathrm{B}]}\right\rangle
$$

Reduced density matrix

$$
\rho_{\mathrm{A}}=\operatorname{Tr}_{\mathrm{B}}|\Psi\rangle\langle\Psi|=\sum_{\alpha} \lambda_{\alpha}^{2}\left|\phi_{\alpha}^{[\mathrm{A}]}\right\rangle\left\langle\phi_{\alpha}^{[\mathrm{A}]}\right|
$$

Normalized GS

$$
\begin{aligned}
& \phi_{\alpha}^{[\mathrm{A}]} \in \mathcal{H}_{\mathrm{A}}, \phi_{\alpha}^{[\mathrm{B}]} \in \mathcal{H}_{\mathrm{B}} \\
& \left\{\left|\phi_{\alpha}^{[\mathrm{A}]}\right\rangle\right\},\left\{\left|\phi_{\alpha}^{[\mathrm{B}]}\right\rangle\right\}: \text { Orthonormal basis }
\end{aligned}
$$

von Neumann entanglement entropy

$$
\mathcal{S}=\operatorname{Tr} \rho_{\mathrm{A}} \ln \rho_{\mathrm{A}}=-\sum_{\alpha} \lambda_{\alpha}^{2} \ln \lambda_{\alpha}^{2}
$$

Introduction

Entanglement properties in 1D quantum systems!!
1D gapped systems: EE converges to some value.
1D critical systems: EE diverges logarithmically with L. coefficient is related to the central charge.

XXZ model under magnetic field $\mathcal{H}_{\mathrm{xxz}}=\sum_{i}\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}+\Delta \sigma_{i}^{z} \sigma_{i+1}^{z}-\lambda \sigma_{i}^{z}\right)$ XY model under magnetic field $\mathcal{H}_{\mathrm{XY}}=-\sum_{i=0}^{N-1}\left(\frac{a}{2}\left[(1+\gamma) \sigma_{i}^{x} \sigma_{i+1}^{x}+(1-\gamma) \sigma_{i}^{y} \sigma_{i+1}^{y}\right]+\sigma_{i}^{z}\right)$

Entanglement properties in 2D quantum systems??

Preliminaries: reflection symmetric case

Pre-Schmidt decomposition

$$
|\Psi\rangle=\sum_{\alpha}\left|\phi_{\alpha}^{[\mathrm{A}]}\right\rangle \otimes\left|\phi_{\alpha}^{[\mathrm{B}]}\right\rangle \begin{aligned}
& \left\{\left|\phi_{\alpha}^{[\mathrm{A}]}\right\rangle\right\},\left\{\left|\phi_{\alpha}^{[\mathrm{B}]}\right\rangle\right\} \\
& \\
& \\
& \\
& \text { (but not orthonormal) }
\end{aligned}
$$

Overlap matrix

Reflection symmetry

$$
\left(M^{[\mathrm{A}]}\right)_{\alpha \beta}:=\left\langle\phi_{\alpha}^{[\mathrm{A}]} \mid \phi_{\beta}^{[\mathrm{A}]}\right\rangle, \quad\left(M^{[\mathrm{B}]}\right)_{\alpha \beta}:=\left\langle\phi_{\alpha}^{[\mathrm{B}]} \mid \phi_{\beta}^{[\mathrm{B}]}\right\rangle
$$

Reflection symmetry
 $$
M^{[\mathrm{A}]}=M^{[\mathrm{B}]}=M
$$

Useful fact

If $M^{[\mathrm{A}]}=M^{[\mathrm{B}]}=M$ and M is real symmetric matrix,

$$
\mathcal{S}=-\sum_{\alpha} p_{\alpha} \ln p_{\alpha}, \quad p_{\alpha}=\frac{d_{\alpha}^{2}}{\sum_{\alpha} d_{\alpha}^{2}}
$$

where d_{α} are the eigenvalues of M.

Digest

Entanglement properties of
 2D quantum systems

Physical properties of 1D quantum systems

VBS on square lattice

VBS on hexagonal lattice

Quantum lattice gas on ladder

Volume exclusion effect

Quantum lattice gas on ladder

Total system	Entanglement
Hamiltonian	
Square ladder	2D Ising
Triangle ladder	2D 3-state Potts

VBS (Valence-Bond-Solid) state

Valence bond = Singlet pair $\left.\left.\quad|s\rangle=\frac{1}{\sqrt{2}}(|\uparrow\rangle\rangle-|\downarrow\rangle\right\rangle\right)$

AKLT (Affleck-Kennedy-Lieb-Tasaki) model

$$
\mathcal{H}=\sum_{i}\left[\vec{S}_{i} \cdot \vec{S}_{i+1}+\frac{1}{3}\left(\vec{S}_{i} \cdot \vec{S}_{i+1}\right)^{2}\right] \quad(S=1)
$$

Ground state: VBS state
Valence bond $\quad|s\rangle=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle)$

- Exact unique ground state; S=1 VBS state
- Rigorous proof of the "Haldane gap"
- AFM correlation decays fast exponentially

VBS (Valence-Bond-Solid) state

VBS state = Singlet-covering state

2D square lattice

2D hexagonal lattice

MBQC using VBS state
T-C. Wei, I. Affleck, and R. Raussendorf, Phys. Rev. Lett.106, 070501 (2011).
A. Miyake, Ann. Phys. 326, 1656 (2011).

VBS (Valence-Bond-Solid) state

VBS state $=$ Singlet-covering state

Schwinger boson representation

$$
n_{k}^{(b)}=b_{k}^{\dagger} b_{k}
$$

$$
|\uparrow\rangle=a^{\dagger}|\mathrm{vac}\rangle, \quad|\downarrow\rangle=b^{\dagger}|\mathrm{vac}\rangle
$$

Valence bond solid (VBS) state

$$
|\mathrm{VBS}\rangle=\prod_{\langle k, l\rangle}\left(a_{k}^{\dagger} b_{l}^{\dagger}-b_{k}^{\dagger} a_{l}^{\dagger}\right)|\mathrm{vac}\rangle
$$

VBS (Valence-Bond-Solid) state

Reflection symmetry

2D square lattice

2D hexagonal lattice

VBS (Valence-Bond-Solid) state

Overlap matrix

$M_{\{\alpha\},\{\beta\}}: 2^{\left|\Lambda_{\mathrm{A}}\right|} \times 2^{\left|\Lambda_{\mathrm{A}}\right|}$ matrix

- Local gauge transformation
- Reflection symmetry

Subsystem B

Each element can be obtained by Monte Carlo calculation!! $\mathrm{SU}(\mathrm{N})$ case can be also calculated.

Entanglement properties

- Entanglement entropy
- Entanglement spectrum
- Nested entanglement entropy

Entanglement properties of 2D VBS states

VBS state $=$ Singlet-covering state

2D square lattice

$$
\underset{\mathrm{OBC}}{ } L_{x}
$$

2D hexagonal lattice

Entanglement entropy of 2D VBS states

cf. Entanglement entropy of 1 D VBS states

$$
|\mathrm{VBS}\rangle=\prod_{i=0}^{N}\left(a_{i}^{\dagger} b_{i+1}^{\dagger}-b_{i}^{\dagger} a_{i+1}^{\dagger}\right)^{S}|\mathrm{vac}\rangle
$$

Subsystem A

S = ln (\# Edge states)

Entanglement entropy of 2D VBS states

2D square lattice

2D hexagonal lattice

$$
\overrightarrow{\mathrm{OBC}}
$$

Entanglement spectra of 2D VBS states

H. Li and F. D. M. Haldane, Phys. Rev. Lett. 101, 010504 (2008).

Reduced density matrix $\quad \rho_{\mathrm{A}}=\sum_{\alpha} \mathrm{e}^{-\lambda_{\alpha}}\left|\phi_{\alpha}^{[\mathrm{A}]}\right\rangle\left\langle\phi_{\alpha}^{[\mathrm{A}]}\right|$
Entanglement Hamiltonian $\quad \rho_{\mathrm{A}}=\mathrm{e}^{-\mathcal{H}_{\mathrm{E}}} \quad\left(\mathcal{H}_{\mathrm{E}}=-\ln \rho_{\mathrm{A}}\right)$

cf. J. I. Cirac, D. Poilbranc, N. Schuch, and F. Verstraete, Phys. Rev. B 83, 245134 (2011).

Nested entanglement entropy

"Entanglement" ground state $:=$ g.s. of $\mathcal{H}_{\mathrm{E}}:\left|\Psi_{0}\right\rangle$

$$
\mathcal{H}_{\mathrm{E}}=-\ln \rho_{\mathrm{A}}
$$

$$
\mathcal{H}_{\mathrm{E}}\left|\Psi_{0}\right\rangle=E_{\mathrm{gs}}\left|\Psi_{0}\right\rangle
$$

$$
\rho_{\mathrm{A}}\left|\Psi_{0}\right\rangle=\frac{\rho_{0}\left|\Psi_{0}\right\rangle}{\underline{\text { Maximum eigenvalue }}}
$$

Nested reduced density matrix

$$
\rho(\ell):=\operatorname{Tr}_{\ell+1, \cdots, L}\left[\left|\Psi_{0}\right\rangle\left\langle\Psi_{0}\right|\right]
$$

Nested entanglement entropy

$$
\mathcal{S}(\ell, L)=-\operatorname{Tr}_{1, \cdots, \ell}[\rho(\ell) \ln \rho(\ell)]
$$

1D quantum critical system (periodic boundary condition)

$$
\begin{gathered}
\mathcal{S}^{\mathrm{PBC}}\left(\ell, L_{y}\right)=\frac{c}{3} \ln [f(\ell)]+s_{1} \\
f(\ell)=\frac{L_{y}}{\pi} \sin \left(\frac{\pi \ell}{L_{y}}\right)
\end{gathered}
$$

P. Calabrese and J. Cardy, J. Stat. Mech. (2004) P06002.

Nested entanglement entropy

Central charge: $c=1$ 1D antiferromagnetic Heisenberg des Cloizeaux-Pearson mode in ES supports this result.

VBS/CFT correspondence

Digest

Entanglement properties of
 2D quantum systems

Physical properties of 1D quantum systems

VBS on square lattice

VBS on hexagonal lattice

Quantum lattice gas on ladder

Volume exclusion effect

Quantum lattice gas on ladder

Total system	Entanglement
Hamiltonian	
Square ladder	2D Ising
Triangle ladder	2D 3-state Potts

Digest

Entanglement properties of 2D quantum systems

Physical properties of 1D quantum systems

Quantum lattice gas on ladder

Volume exclusion effect

VBS state on 2D lattice

Quantum lattice gas on ladder

Total system	Entanglement Hamiltonian
Square ladder	2D Ising
Triangle ladder	2D 3-state Potts

Rydberg Atom

$$
\mathcal{H}=\Omega \sum_{i \in \Lambda} \sigma_{i}^{x}+\Delta \sum_{i \in \Lambda} n_{i}+V \sum_{i, j} \frac{n_{i} n_{j}}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|^{\gamma}}
$$

Quantum hard-core lattice gas model

Construct a solvable model

$$
\begin{aligned}
\mathcal{H}_{\text {sol }} & =\sum_{i \in \Lambda} h_{i}^{\dagger}(z) h_{i}(z), \quad h_{i}(z):=\left[\sigma_{i}^{-}-\sqrt{z}\left(1-n_{i}\right)\right] \mathcal{P}_{\langle i\rangle}
\end{aligned} \begin{aligned}
& n_{i}=\frac{\sigma_{i}^{*}+1}{2} \\
& \mathcal{H}_{\langle i\rangle}:=\prod_{\text {sol }}=-\sqrt{z} \sum_{i \in \Lambda}\left(\sigma_{i}^{+}+\sigma_{i}^{-}\right) \mathcal{P}_{\langle i\rangle}
\end{aligned}+\sum_{\text {Creation/annihilation }}^{\sum_{i \in \Lambda}\left[(1-z) n_{i}+z\right] \mathcal{P}_{\langle i\rangle}} \begin{aligned}
& \begin{array}{l}
\text { Interaction btw particles \& } \\
\text { chemical potential }
\end{array}
\end{aligned}
$$

1-dim chain

$$
\mathcal{H}=\sum_{i=1}^{L} \mathcal{P}\left[-\sqrt{z} \sigma_{i}^{x}+(1-3 z) n_{i}+z n_{i-1} n_{i+1}+z\right] \mathcal{P} \begin{aligned}
& \text { Transverse Ising model } \\
& \text { with constraint }
\end{aligned}
$$

Hamiltonian is positive semi-definite.
Eigenenergies are non-negative.

Zero-energy state (ground state)

$$
|z\rangle=\frac{1}{\sqrt{\Xi(z)}} \prod_{i \in \Lambda} \exp \left(\sqrt{z} \sigma_{i}^{+} \mathcal{P}_{\langle i\rangle}\right)|\downarrow \downarrow \cdots \downarrow\rangle \quad|\downarrow \downarrow \cdots \downarrow\rangle: \text { Vacuum state }
$$

GS of the quantum hard-core lattice gas model

unnormalized ground state: $|\Psi(z)\rangle:=\sqrt{\Xi(z)}|z\rangle=\sum_{\mathcal{C} \in \mathcal{S}} z^{n_{c} / 2}|\mathcal{C}\rangle$
\mathcal{C} : classical configuration of particle on Λ

$$
\left\langle\mathcal{C} \mid \mathcal{C}^{\prime}\right\rangle=\delta_{\mathcal{C}, \mathcal{C}^{\prime}}(|\mathcal{C}\rangle \text { is orthonormal basis })
$$

\mathcal{S} : set of classical configurations with "constraint"
$n_{\mathcal{C}}$: number of particles in the state \mathcal{C}
Normalization factor
= Partition function of classical hard-core lattice gas model

$$
\Xi(z)=\langle\Psi(z) \mid \Psi(z)\rangle=\sum_{\mathcal{C} \in \mathcal{S}} z^{n_{\mathcal{C}}}
$$

z :chemical potential

GS of the quantum hard-core lattice gas model

Periodic boundary condition is imposed in the leg direction.

Square ladder

Triangle ladder

unnormalized ground state:

$$
|\Psi(z)\rangle=\sum_{\sigma} \sum_{\tau}[T(z)]_{\tau, \sigma}|\tau\rangle \otimes|\sigma\rangle, \quad[T(z)]_{\tau, \sigma}:=\prod_{i=1} w\left(\sigma_{i}, \sigma_{i+1}, \tau_{i+1}, \tau_{i}\right)
$$

Square ladder
Triangle ladder

GS of the quantum hard-core lattice gas model

Periodic boundary condition is imposed in the leg direction.

Square ladder

Triangle ladder

unnormalized ground state:

$$
|\Psi(z)\rangle=\sum_{\sigma} \sum_{\tau}[T(z)]_{\tau, \sigma}|\tau\rangle \otimes|\sigma\rangle, \quad[T(z)]_{\tau, \sigma}:=\prod_{i=1}^{L} w\left(\sigma_{i}, \sigma_{i+1}, \tau_{i+1}, \tau_{i}\right)
$$

$$
|z\rangle=\frac{1}{\sqrt{\Xi(z)}} \sum_{\sigma} \sum_{\tau}[T(z)]_{\tau, \sigma}|\tau\rangle \otimes|\sigma\rangle
$$

Overlap matrix

$$
M=\frac{1}{\Xi(z)}[T(z)]^{\mathrm{T}} T(z)
$$

Entanglement entropy

$$
\mathcal{S}=-\operatorname{Tr}[M \ln M]=-\sum_{\alpha} p_{\alpha} \ln p_{\alpha} \quad p_{\alpha}\left(\alpha=1,2, \cdots, \underline{\underline{N_{L}}}\right) \text { \# of states }
$$

Square ladder

Triangle ladder

Estimation of zc

$$
\xi(z):=\frac{1}{\ln \left[p^{(1)}(z) / p^{(2)}(z)\right]}
$$

$p^{(1)}(z)$: the largest eigenvalue of M
$p^{(2)}(z)$: the second-largest eigenvalue of M

Finite-size scaling for correlation length

Finite-size scaling

Finite-size scaling relation: $\xi(z) / L=f\left[\left(z-z_{\mathrm{c}}\right) L^{1 / \nu}\right]$

Entanglement spectra at $z=z c$

Eigenvalues of entanglement Hamiltonian at $z=z_{\mathrm{c}}$

Nested entanglement entropy at $\mathrm{z}=\mathrm{zc}$

$\left|\psi_{0}\right\rangle$: Ground state of entanglement Hamiltonian $\left(z=z_{c}\right)$ nested reduced density matrix:

$$
\begin{gathered}
\rho(\ell):=\operatorname{Tr}_{\ell+1, \cdots, L}\left[\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right|\right] \\
s(\ell, L):=-\operatorname{Tr}_{1, \cdots, \ell}[\rho(\ell) \ln \rho(\ell)]
\end{gathered}
$$

Phys. Rev. B 84, 245128 (2011).
Interdisciplinary Information Sciences, 19, 101 (2013)

$$
s(\ell, L)=\frac{c}{3} \ln [g(\ell)]+s_{1}, \quad g(\ell)=\frac{L}{\pi} \sin \left(\frac{\pi \ell}{L}\right)
$$

Digest

Entanglement properties of 2D quantum systems

Physical properties of 1D quantum systems

Quantum lattice gas on ladder

Volume exclusion effect

VBS state on 2D lattice

Quantum lattice gas on ladder

Total system	Entanglement Hamiltonian
Square ladder	2D Ising
Triangle ladder	2D 3-state Potts

Conclusion

Entanglement properties of 2D quantum systems

Physical properties of 1D quantum systems

VBS on hexagonal lattice

Quantum lattice gas on ladder

Quantum lattice gas on ladder

Total system	Entanglement Hamiltonian
Square ladder	2D Ising
Triangle ladder	2D 3-state Potts

Thank you for your attention!!

VBS on symmetric graphs, J. Phys. A, 43, 255303 (2010)
"VBS/CFT correspondence", Phys. Rev. B, 84, 245128 (2011)
Quantum hard-square model, Phys. Rev. A, 86, 032326 (2012)
Nested entanglement entropy, Interdisciplinary Information Sciences, 19, 101 (2013)

