Entanglement Behavior of 2D Quantum Models

Shu Tanaka (YITP, Kyoto University)

Collaborators:

Hosho Katsura (Univ. of Tokyo, Japan) Anatol N. Kirillov (RIMS, Kyoto Univ., Japan) Vladimir E. Korepin (YITP, Stony Brook, USA) Naoki Kawashima (ISSP, Univ. of Tokyo, Japan) Lou Jie (Fudan Univ., China) Ryo Tamura (NIMS, Japan)

VBS on symmetric graphs, J. Phys. A, **43**, 255303 (2010) "VBS/CFT correspondence", Phys. Rev. B, **84**, 245128 (2011) Quantum hard-square model, Phys. Rev. A, **86**, 032326 (2012) Nested entanglement entropy, Interdisciplinary Information Sciences, **19**, 101 (2013)

Digest

VBS state on 2D lattice

Total system	Entanglement Hamiltonian
Square lattice	1D AF Heisenberg
Hexagonal lattice	1D F Heisenberg

Quantum lattice gas on ladder

Total system	Entanglement Hamiltonian
Square ladder	2D Ising
Triangle ladder	2D 3-state Potts

Introduction - Entanglement - Motivation - Preliminaries

Introduction

EE is a measure to quantify entanglement.

Schmidt decomposition

$$|\Psi\rangle = \sum_{\alpha} \lambda_{\alpha} |\phi_{\alpha}^{[A]}\rangle \otimes |\phi_{\alpha}^{[B]}\rangle$$

Reduced density matrix

$$\rho_{\rm A} = \mathrm{Tr}_{\rm B} |\Psi\rangle \langle \Psi| = \sum_{\alpha} \lambda_{\alpha}^2 |\phi_{\alpha}^{[\rm A]}\rangle \langle \phi_{\alpha}^{[\rm A]}|$$

Normalized GS

$$\begin{split} \phi_{\alpha}^{[A]} \in \mathcal{H}_{A}, \phi_{\alpha}^{[B]} \in \mathcal{H}_{B} \\ \{ |\phi_{\alpha}^{[A]} \rangle \}, \{ |\phi_{\alpha}^{[B]} \rangle \} : \text{Orthonormal basis} \end{split}$$

von Neumann entanglement entropy $S = \operatorname{Tr} \rho_{A} \ln \rho_{A} = -\sum_{\alpha} \lambda_{\alpha}^{2} \ln \lambda_{\alpha}^{2}$

Introduction

Entanglement properties in **1D** quantum systems!!

1D gapped systems: EE converges to some value.
1D critical systems: EE diverges logarithmically with L. coefficient is related to the central charge.

Entanglement properties in 2D quantum systems??

Preliminaries: reflection symmetric case

Pre-Schmidt decomposition

$$\begin{split} |\Psi\rangle = \sum_{\alpha} |\phi_{\alpha}^{[A]}\rangle \otimes |\phi_{\alpha}^{[B]}\rangle & \{|\phi_{\alpha}^{[A]}\rangle\}, \{|\phi_{\alpha}^{[B]}\rangle\} \\ \text{Linearly independent} \\ \text{(but not orthonormal)} \end{split}$$

Overlap matrix

$$(M^{[\mathbf{A}]})_{\alpha\beta} := \langle \phi_{\alpha}^{[\mathbf{A}]} | \phi_{\beta}^{[\mathbf{A}]} \rangle, \ (M^{[\mathbf{B}]})_{\alpha\beta} := \langle \phi_{\alpha}^{[\mathbf{B}]} | \phi_{\beta}^{[\mathbf{B}]} \rangle$$

Reflection symmetry $M^{[A]} = M^{[B]} = M$

Useful fact

If $M^{[A]} = M^{[B]} = M$ and M is real symmetric matrix,

$$S = -\sum_{\alpha} p_{\alpha} \ln p_{\alpha}, \qquad p_{\alpha} = \frac{d_{\alpha}^{2}}{\sum_{\alpha} d_{\alpha}^{2}}$$

where d_{α} are the eigenvalues of M.

Reflection symmetry

Subsystem

B

Subsystem

Α

Digest

Total system	Entanglement Hamiltonian
Square lattice	1D AF Heisenberg
Hexagonal lattice	1D F Heisenberg

Total system	Entanglement Hamiltonian
Square ladder	2D Ising
Triangle ladder	2D 3-state Potts

Valence bond = Singlet pair
$$|s\rangle = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$

AKLT (Affleck-Kennedy-Lieb-Tasaki) model

I. Affleck, T. Kennedy, E. Lieb, and H. Tasaki, PRL 59, 799 (1987).

- Exact unique ground state; S=1 VBS state
- Rigorous proof of the "Haldane gap"
- AFM correlation decays fast exponentially

VBS state = Singlet-covering state

MBQC using VBS state

T-C. Wei, I. Affleck, and R. Raussendorf, Phys. Rev. Lett. **106**, 070501 (2011). A. Miyake, Ann. Phys. **326**, 1656 (2011).

VBS state = Singlet-covering state

Each element can be obtained by Monte Carlo calculation!! SU(N) case can be also calculated. Phys. Rev. B, 84, 245128 (2011)

cf. H. Katsura, arXiv:1407.4262

Entanglement properties

Entanglement entropy
Entanglement spectrum
Nested entanglement entropy

Entanglement properties of 2D VBS states

VBS state = Singlet-covering state

Entanglement entropy of 2D VBS states

S = In (# Edge states)

Entanglement entropy of 2D VBS states

Entanglement spectra of 2D VBS states

H. Li and F. D. M. Haldane, Phys. Rev. Lett. **101**, 010504 (2008). $\rho_{\rm A} = \sum e^{-\lambda_{\alpha}} |\phi_{\alpha}^{[\rm A]}\rangle \langle \phi_{\alpha}^{[\rm A]}|$ **Reduced density matrix Entanglement Hamiltonian** $\rho_{\rm A} = e^{-\mathcal{H}_{\rm E}}$ $(\mathcal{H}_{\rm E} = -\ln \rho_{\rm A})$ 10 Square Hexagonal $(L_x=5, L_y=16)$ (L_x=5, L_y=32) 8 **1D antiferro 1D ferro** Heisenberg Heisenberg des Cloizeaux-Spin wave 1 -1 Pearson mode k/π k/π

cf. J. I. Cirac, D. Poilbranc, N. Schuch, and F. Verstraete, Phys. Rev. B 83, 245134 (2011).

Nested entanglement entropy

"Entanglement" ground state := g.s. of \mathcal{H}_{E} : $|\Psi_{0}\rangle$ $\mathcal{H}_{E} = -\ln \rho_{A}$ $\mathcal{H}_{E}|\Psi_{0}\rangle = E_{gs}|\Psi_{0}\rangle$ $\rho_{A}|\Psi_{0}\rangle = \rho_{0}|\Psi_{0}\rangle$ <u>Maximum eigenvalue</u> Nested reduced density matrix $\rho(\ell) := \operatorname{Tr}_{\ell+1,\cdots,L}[|\Psi_{0}\rangle\langle\Psi_{0}|]$ Nested entanglement entropy $\mathcal{S}(\ell, L) = -\operatorname{Tr}_{1,\cdots,\ell}[\rho(\ell)\ln\rho(\ell)]$

1D quantum critical system (periodic boundary condition)

 $\mathcal{S}^{\text{PBC}}(\ell, L_y) = \frac{c}{3} \ln[f(\ell)] + s_1$ $f(\ell) = \frac{L_y}{\pi} \sin\left(\frac{\pi\ell}{L_y}\right)$

P. Calabrese and J. Cardy, J. Stat. Mech. (2004) P06002.

Nested entanglement entropy

Central charge: c = 1 **D antiferromagnetic Heisenberg** des Cloizeaux-Pearson mode in ES supports this result.

VBS/CFT correspondence

Digest

Total system	Entanglement Hamiltonian
Square lattice	1D AF Heisenberg
Hexagonal lattice	1D F Heisenberg

Total system	Entanglement Hamiltonian
Square ladder	2D Ising
Triangle ladder	2D 3-state Potts

Digest

VBS state on 2D lattice

Total system	Entanglement Hamiltonian
Square lattice	1D AF Heisenberg
Hexagonal lattice	1D F Heisenberg

Quantum lattice gas on ladder

Total system	Entanglement Hamiltonian
Square ladder	2D Ising
Triangle ladder	2D 3-state Potts

Rydberg Atom

Quantum hard-core lattice gas model

GS of the quantum hard-core lattice gas model

unnormalized ground state: $|\Psi(z)\rangle := \sqrt{\Xi(z)}|z\rangle = \sum_{C \in S} z^{n_C/2}|C\rangle$

 $\mathcal C$: classical configuration of particle on Λ

 $\langle {\cal C} | {\cal C}'
angle = \delta_{{\cal C},{\cal C}'}$ ($| {\cal C}
angle$ is orthonormal basis)

 ${\mathcal S}\,:$ set of classical configurations with "constraint"

 $n_{\mathcal{C}}$: number of particles in the state \mathcal{C}

GS of the quantum hard-core lattice gas model

GS of the quantum hard-core lattice gas model

Phys. Rev. A, 86, 032326 (2012)

Entanglement entropy

$$\mathcal{S} = -\text{Tr}\left[M\ln M\right] = -\sum_{\alpha} p_{\alpha} \ln p_{\alpha} \qquad p_{\alpha} \left(\alpha = 1, 2, \cdots, \underline{N_L}\right)_{\# \text{ of states}}$$

Estimation of zc

Finite-size scaling for correlation length

Finite-size scaling

Entanglement spectra at z=zc

critical phenomena" (Springer)

Nested entanglement entropy at z=zc

 $|\psi_0\rangle$: Ground state of entanglement Hamiltonian ($z = z_c$)nested reduced density matrix: $\rho(\ell) := \operatorname{Tr}_{\ell+1,\cdots,L}[|\psi_0\rangle\langle\psi_0|]$ nested entanglement entropy: $s(\ell, L) := -\operatorname{Tr}_{1,\cdots,\ell}[\rho(\ell) \ln \rho(\ell)]$

Phys. Rev. B **84**, 245128 (2011). *Interdisciplinary Information Sciences*, **19**, 101 (2013)

Digest

VBS state on 2D lattice

Total system	Entanglement Hamiltonian
Square lattice	1D AF Heisenberg
Hexagonal lattice	1D F Heisenberg

Quantum lattice gas on ladder

Total system	Entanglement Hamiltonian
Square ladder	2D Ising
Triangle ladder	2D 3-state Potts

Conclusion

VBS state on 2D lattice

Total system	Entanglement Hamiltonian
Square lattice	1D AF Heisenberg
Hexagonal lattice	1D F Heisenberg

Quantum lattice gas on ladder

Total system	Entanglement Hamiltonian
Square ladder	2D Ising
Triangle ladder	2D 3-state Potts

Thank you for your attention!!

VBS on symmetric graphs, J. Phys. A, **43**, 255303 (2010) "VBS/CFT correspondence", Phys. Rev. B, **84**, 245128 (2011) Quantum hard-square model, Phys. Rev. A, **86**, 032326 (2012) Nested entanglement entropy, Interdisciplinary Information Sciences, **19**, 101 (2013)