Algebraic aspects of chiral symmetry

Atsushi Hosaka RCNP, Osaka University

May 27, 2010

YITP molecule, EXIHC10

1

Contents

- 1. Broken (Hidden) chiral symmetry
- 2. Non-linear (dynamic) vs linear (algebraic)
- 3. Representations and constraints
- 4. Weinberg's consistency conditions
- 5. Linear sigma models with mirror baryons
- 6. Extention to SU(3)xSU(3)

Broken (Hidden) chiral symmetry

Chiral symmetry is hidden

Ordinary symmetry (Algebraic)

Example (Isospin), $\pi N \rightarrow \Delta \rightarrow \pi N$ scattering

 π : I = 1, N: I = 1/2 I_{tot} = 1/2 or 3/2

$$\langle \pi^{+}p | T | \pi^{+}p \rangle = \sum_{I} \langle \pi^{+}p | I \rangle \langle I | T | I \rangle \langle I | \pi^{+}p \rangle = \langle \pi^{+}p | 3/2 \rangle T(3/2) \langle 3/2 | \pi^{+}p \rangle = T(3/2)$$

$$\langle \pi^{0}p | T | \pi^{0}p \rangle = \langle \pi^{0}p | 3/2 \rangle T_{3/2} \langle 3/2 | \pi^{0}p \rangle = \left| \left(10 \frac{1}{2} \frac{1}{2} | \frac{3}{2} \frac{1}{2}\right) \right|^{2} T_{3/2}$$

$$\langle \pi^{0}p | T | \pi^{+}p \rangle = \langle \pi^{0}p | 3/2 \rangle T_{3/2} \langle 3/2 | \pi^{+}p \rangle = \left(10 \frac{1}{2} \frac{1}{2} | \frac{3}{2} \frac{1}{2}\right) \left(11 \frac{1}{2} - \frac{1}{2} | \frac{3}{2} \frac{1}{2}\right) T_{3/2}$$
Matrix elements are related by the CG coefficients

Mass degeneracy

Pion: $m(\pi^+) \sim m(\pi^-) \sim m(\pi^0)$, Nucleon: $m(p) \sim m(n)$

Symmetry transformation $g = e^{i\theta Q}$ Q: generator, θ : parameter Operator $O \rightarrow gOg^{\dagger}$ State $|A\rangle \rightarrow g|A\rangle = |B\rangle$ $H \rightarrow gHg^{\dagger} \sim H + i\theta[Q, H] + ... = H$ [Q, H] = 0

Mass relation

$$m_{A} = \langle A | H | A \rangle = \langle B | g H g^{\dagger} | B \rangle = \langle B | H | B \rangle = m_{B}$$

BUT

$$|B\rangle = g|A\rangle = ga_A^{\dagger}|0\rangle = ga_A^{\dagger}g^{\dagger}g|0\rangle = a_B^{\dagger}g|0\rangle = a_B^{\dagger}g|0\rangle = a_B^{\dagger}|0\rangle$$

Invariance of the vacuum $g|0\rangle = |0\rangle$ is assumed

Ma

Chiral symmetry is spontaneously broken

There is no mass degeneracy

Nambu's contribution

- Nambu had communications with Bardeen
- He realized that the Goldber&Treiman's **dispersion relation** is related to the **conservation of the axial current**
- He noticed the analogy of the **Dirac** theory and the **BCS** theory (Nambu-Gorkov equation)
- Discovery of the SSB of chiral symmetry, NJL model

2. Non-linear (dynamic)vs linear (algebraic)

Questions from Weinberg

• If chiral symmetry is spontaneously broken, no chiral partner is needed to write down chiral invariant Lagrangian in the *non-linear* realization.

• In that case, chiral symmetry is no longer *algebraic*, but rather *dynamic* as it leads to low energy theorems.

Weinberg:

"how it is possible for a dynamical symmetry like chirality to have any algebraic consequences?"

YITP MOIECUIE, EXIHCTU

10

May 27, 2010

QCD ~ linear rep.
$$L_{QCD} = \sum_{f} \overline{q}_{f} (iD - m_{f})q_{f} + \frac{\text{tr}}{4}F_{\mu\nu}^{2}$$
For massless quarks, $f = u, d$

$$\begin{split} L_{QCD} &= \overline{q}i \mathbb{D}q + \ldots = \overline{q}_{L}i \mathbb{D}q_{L} + \overline{q}_{R}i \mathbb{D}q_{R} + \ldots \\ q_{L,R} &= \frac{1 \mp \gamma_{5}}{2}q, \quad q = q_{L} + q_{R} \end{split}$$

This is invariant under $SU(2)_L \times SU(2)_R$, and furthermore, quarks are in the *linear fundamental representation*.

$$q \sim \left(\frac{1}{2}, 0\right) + \left(0, \frac{1}{2}\right)$$

QCD ~ linear rep.
$$L_{QCD} = \sum_{f} \bar{q}_{f} (iD - m_{f})q_{f} + \frac{\text{tr}}{4}F_{\mu\nu}^{2}$$
For massless quarks, $f = u, d$

$$L_{QCD} = \overline{q}i\mathcal{D}q + \dots = \overline{q}_{L}i\mathcal{D}q_{L} + \overline{q}_{R}i\mathcal{D}q_{R} + \dots$$
$$q_{L,R} = \frac{1 \mp \gamma_{5}}{2}q, \quad q = q_{L} + q_{R}$$

This is invariant under $SU(2)_L \times SU(2)_R$, and furthermore, quarks are in the *linear fundamental representation*.

$$q \sim \left(\frac{1}{2}, 0\right) + \left(0, \frac{1}{2}\right)$$

From linear to non-linear

Linear sigma model

$$L = \overline{q}i\partial_{\mu}\gamma^{\mu}q - g\overline{q}\left(\sigma + i\vec{\tau}\cdot\vec{\pi}\gamma_{5}\right)q + \frac{1}{2}\left(\left(\partial_{\mu}\sigma\right)^{2} + \left(\partial_{\mu}\vec{\pi}\right)^{2}\right) - V\left(\sigma,\vec{\pi}\right)$$

Assumptions are

 $q \sim \left(\frac{1}{2}, 0\right) + \left(0, \frac{1}{2}\right)$ Fundamental representation

 $(\sigma, \vec{\pi}) \sim (\frac{1}{2}, \frac{1}{2})$ Chiral four-vector representation

As a consequence $m_q = gf_{\pi}$ (Golberger-Treiman relation)

with
$$g_A = 1$$

The value of g_A is determined by the representation. In a non-linear theory, g_A can take an *arbitrary value*. In other words, in a broken phase, representation mixing occurs.

> Isospin analogue: Isospin charge of N = 1/2 $\Delta = 3/2$

May 27, 2010

YITP molecule, EXIHC10

Linear representations

More constraints on dynamics Various couplings, scattering amplitudes, etc

Question: What chiral multiplets do hadrons belong to?

YITP molecule, EXIHC10

Further needs of linear reps.

At high temperature and/or density, chiral symmetry is restored

• Hadrons (if survive) *must* belong to linear chiral representations, and a hadron theory may be constructed by a linear chiral model

• Character change in a massive (Higgs) mode (σ) may be observed in experiments

=>

3. Representations and constraints

Chiral representations

 $SU(2)_L \times SU(2)_R \rightarrow (D_L, D_R)$ $D_L + D_R \sim Isospin$

Quark: $\psi = \psi_L + \psi_R \sim (\frac{1}{2}, 0) + (0, \frac{1}{2})$ Fundamental (Nucleon in the linear sigma model)

Scalar mesons $(\sigma, \vec{\pi}), (\eta, \vec{a}_0) \sim (\frac{1}{2}, \frac{1}{2})$ Chiral four-vector $\tau_{\mu} = (1, \tau_1, \tau_2, \tau_3) \rightarrow (\bar{\psi} \tau_{\mu} \psi, \bar{\psi} \tau_{\mu} \gamma_5 \psi)$ $\rightarrow (\bar{\psi} \tau_0 \psi, \bar{\psi} \vec{\tau} \gamma_5 \psi) + (\bar{\psi} \tau_0 \gamma_5 \psi, \bar{\psi} \vec{\tau} \psi) \sim (\sigma, \vec{\pi}) + (\eta, \vec{a}_0)$

In general various higher representations are possible

Chiral structure of quark composites
Mesons
$$\overline{qq} \sim \left[\left(\frac{1}{2},0\right)+\left(0,\frac{1}{2}\right)\right] \times \left[\left(\frac{1}{2},0\right)+\left(0,\frac{1}{2}\right)\right]$$

 $= (0,0) + (1,0)+(0,1) + \left(\frac{1}{2},\frac{1}{2}\right)$
Scalar Anti-symm tensor Four-vector
Baryons $qqq \sim \left[\left(\frac{1}{2},0\right)+\left(0,\frac{1}{2}\right)\right]^3$
 $= \left(\frac{1}{2},0\right)+\left(0,\frac{1}{2}\right) + \left(1,\frac{1}{2}\right)+\left(\frac{1}{2},1\right) + \left(\frac{3}{2},0\right)+\left(0,\frac{3}{2}\right)$
Fundamental Higher repr.
 $qqqq\overline{q} \sim \left[\left(\frac{1}{2},0\right)+\left(0,\frac{1}{2}\right)\right]^5$
 $= \left(0,\frac{1}{2}\right)+\left(\frac{1}{2},0\right) + \left(1,\frac{3}{2}\right)+\left(\frac{3}{2},1\right)+...$
Mirror
For multiquarks, more complicated structures are possible ₂₀

A technical question

Operators vs States

 $N_1 = (\tilde{q}q)q, \quad N_2 = (\tilde{q}\gamma_5 q)\gamma_5 q \qquad \tilde{q} = q^T C \gamma_5 (i\tau_2)$

These are both I = 1/2, and (1/2,0)+(0,1/2)

However, isospin is conserved but chiral is not in general

$$\langle 0 | \bar{N}N | 0 \rangle \sim \sum_{B} \langle 0 | \bar{N} | B \rangle \langle B | N | 0 \rangle$$

B has the definite I = 1/2, but with any (L, R)

May 27, 2010

$$g_A$$
 valuesFundamental $(\frac{1}{2},0) + (0,\frac{1}{2})$ $g_A = 1$ Mirror $(0,\frac{1}{2}) + (\frac{1}{2},0)$ $g_A = -1$ Higher repr. $(1,\frac{1}{2}) + (\frac{1}{2},1)$ $g_A = \frac{5}{3}$ Arbitrary N_c $(\frac{N_c+1}{4},\frac{N_c-1}{4}) + (\frac{N_c-1}{4},\frac{N_c+1}{4})$ $g_A = \frac{N_c+2}{3}$

Determination g_A value of a baryon is useful to know its structure

4. Weinberg's consistency conditions

May 27, 2010

Algebraic constraints

Weinberg's bottom-up procedure (pre QCD)

Any Lagrangian built from such ingredients will be highly nonlinear and replete with derivative interactions.

"The algebraic aspects of chiral symmetry arise from the need for cancellations which insure reasonable asymptotic behavior at high energy."

... to use them in the tree approximation, ...

We shall require that the rapidly growing terms contributed by the tree graphs shall cancel among themselves

Lagrangian

Non-linear chiral Lagrangian

YITP molecule, EXIHC10

Consistency conditions 1

Scattering amplitude of $\pi N \rightarrow \pi N$

Representations

Hadron states α , β , γ can be components of any representation of chiral symmetry group that are connected by X^a

Pre-QCD, the choice of representations was phenomenological.

Now, can we hope that we determine it from QCD?

Consistency condition 2

Isospin I = 2 part does not contribute to this amplitude <= No exotics

This lead to a constraint on the mass matrix

$$m^{2} = m_{0}^{2} + m_{4}^{2}$$

Chiral scalar Chiral four vector
 $\begin{pmatrix} m_{a}^{2} \ (a = 1, 2, 3) = 0 \end{pmatrix}$

$$\left[X^a, m_0^2\right] = 0, \quad \left[X^a, m_4^2\right] = im_a^2$$

May 27, 2010

YITP molecule, EXIHC10

Predictions

Mesons

 $\pi, \sigma, \rho, a_1 \quad \left(\frac{1}{2}, \frac{1}{2}\right) + \left[\left(1, 0\right) + \left(0, 1\right)\right] \text{ with } 45^\circ \text{ mixing}$ $\sigma - \rho \text{ and } \pi - a_1 \text{ mixing}$

$$m_{\sigma} = m_{\rho}, \quad m_{a_1} = \sqrt{2}m_{\rho}$$
$$\Gamma_{\sigma} / \Gamma_{\rho} = \frac{9}{2} \left(1 - 4\frac{m_{\pi}^2}{m_{\rho}^2}\right)^{-1}$$

Baryons

N, D, Roper
$$\left[\left(\frac{1}{2},0\right)+\left(0,\frac{1}{2}\right)\right], \left[\left(1,\frac{1}{2}\right)+\left(\frac{1}{2},1\right)\right]$$

$$\theta \sim 52^\circ$$
 $g_A \sim 1.25$

$$\theta \sim 45^{\circ}$$
 $g_A \sim 4 / 3 \sim 1.333$
 $m_N^2 + m_R^2 = 2m_{\Delta}^2$

From $\langle \bar{q} O q \rangle$ we can construct only one Lorentz scalar $\langle \bar{q} 1 q \rangle$

But this is the fourth component of a chiral four-vector

$$\left(\frac{1}{2}, \frac{1}{2}\right) \sim \left(\sigma, \pi_1, \pi_2, \pi_3\right)$$

Hence, if the mass has a qq^{bar} origin, it must be of chiral four-vector

 $_{M\epsilon}$ Chiral scalar may be furnished by gluons or multiquarks $_{31}$

5. Linear sigma models with mirror baryons

Simple models

A chiral doublet *N* and *N** ~ can be any chiral repr. Simple choices $(\frac{1}{2}, 0) + (0, \frac{1}{2})$ and/or $(0, \frac{1}{2}) + (\frac{1}{2}, 0)$

Axial-charge carry information on internal structure

Naïve model

Lagrangian

$$L = \overline{N_1} i \partial N_1 - g_1 \, \overline{N_1} (\sigma + i\gamma_5 \pi_a \tau^a) N_1$$

+ $\overline{N_2} i \partial N_2 + g_2 \, \overline{N_2} (\sigma + i\gamma_5 \pi_a \tau^a) N_2$
+ $g_{12} \left[\overline{N_1} (\sigma + i\pi_a \tau^a \gamma_5) N_2 + \overline{N_2} (\sigma + i\pi_a \tau^a \gamma_5) N_1 \right] + \cdots$

Chiral scalar mass term is not possible

Lorentz invariance requires a structure $L^{\dagger}R + R^{\dagger}L$

Mass term after $\sigma \rightarrow \langle \sigma \rangle \equiv \sigma_0$

$$\left(\bar{N}_{1}, \bar{N}_{2}\right) \sigma_{0} U_{5} \begin{pmatrix} g_{1} & g_{12} \gamma_{5} \\ g_{12} \gamma_{5} & -g_{2} \end{pmatrix} \begin{pmatrix} N_{1} \\ N_{2} \end{pmatrix}$$
May 27, 2010 34

Diagonalization

$$\binom{N_{+}}{N_{-}} = \begin{pmatrix} \cos\theta & \gamma_{5}\sin\theta \\ -\gamma_{5}\sin\theta & \cos\theta \end{pmatrix} \binom{N_{1}}{N_{2}} \qquad \tan 2\theta = \frac{2g_{12}}{g_{1} + g_{2}}$$

$$m_{\pm} = \frac{\sigma_0}{2} \left(\sqrt{(g_1 + g_2)^2 + 4g_{12}^2} \pm (g_1 - g_2) \right)$$

•
$$N_1$$
 and N_2 decouple

• Masses are solely generated by σ_0

Chiral four-vector

Mirror

$$L_{free} = \overline{\psi}_1 i \partial \psi_1 + \overline{\psi}_2 i \partial \psi_2 - m_0 \left(\overline{\psi}_2 \gamma_5 \psi_1 - \overline{\psi}_1 \gamma_5 \psi_2 \right)$$

Axial charge
$$g_A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$$
 diagonal
But mass matrix $M = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ Non-diagonal

$$\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

45° rotation

YITP molecule, EXIHC10

Mirror

 $L = \overline{\psi_1} i \partial \psi_1 - g_1 \overline{\psi_1} (\sigma + i \gamma_5 \pi_a \tau^a) \psi_1$ Chiral four-vector

+
$$\overline{\psi}_2 i \partial \psi_2 - g_2 \overline{\psi}_2 (\sigma + i \gamma_5 \pi_a \tau^a) \psi_2$$

 $- \underline{m_0}(\overline{\psi}_2\gamma_5\psi_1 - \overline{\psi}_1\gamma_5\psi_2) + \cdots$

Chiral scalar

is now available when ψ_1 and ψ_2 transform inversely under chiral transformations.

Diagonalization

$$\binom{N_{+}}{N_{-}} = \begin{pmatrix} \cos\theta & \gamma_{5}\sin\theta \\ -\gamma_{5}\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \psi_{1} \\ \psi_{2} \end{pmatrix} \qquad \tan 2\theta = \frac{m_{0}}{\sigma_{0}} \frac{2}{g_{1} + g_{2}}$$

May 2:
$$m_{\pm} = \frac{1}{2} \left(\sqrt{(g_1 + g_2)^2 \sigma_0^2 + 4m_0^2} \pm (g_1 - g_2) \sigma_0 \right)$$
 37

Masses N* Naive N Mirror m_0 $\rho_{\rm c}$ ρ_0 $m_0 = const$ Axial couplings $g_A^{NN^*}$ g_A $\sim g_{\pi NN^*}$ $N = N^*$ N diagonal σ_0 ρ_0 $\rho_{\rm c}$ $\rho_{\rm c}$

 N^*

off diagonal

Observe the sign of g_A

Assume minimal processes with N and N(1535)

Naive:
$$g_{\pi N^*N^*} = g_{\pi NN}$$
 -> constructive
Mirror: $g_{\pi N^*N^*} = -g_{\pi NN}$ -> destructive

YITP molecule, EXIHC10

Pion-induced production

Jido, Oka, Hosaka Prog. Theor. Phys. 106, 873, 2001

Photoproduction

Jido, Oka, Hosaka Prog. Theor. Phys. 106, 873, 2001

YITP molecule, EXIHC10

6. Extension to SU(3)

SU(2)
$$qqq \sim \left[\left(\frac{1}{2},0\right) + \left(0,\frac{1}{2}\right)\right]^{3}$$

$$= \left(\frac{1}{2},0\right) + \left(0,\frac{1}{2}\right) + \left(1,\frac{1}{2}\right) + \left(\frac{1}{2},1\right) + \left(\frac{3}{2},0\right) + \left(0,\frac{3}{2}\right)$$
Higher repr.
SU(3) $qqq \sim \left[\left(3,0\right) + \left(0,3\right)\right]^{3}$

$$= \left(3,\overline{3}\right) + \left(\overline{3},3\right) + \left(8,1\right) + \left(1,8\right) + \left(3,6\right) + \left(6,3\right)$$

$$+ \left(10,1\right) + \left(1,10\right)$$

 γ_{μ} , derivatives d_{μ} , multi q components form various reprs.

Actual calculation

Local fields

Singlet	$\Lambda \equiv \epsilon^{ABC} \epsilon_{abc} (q_A^{aT} C \Gamma_1 q_B^b) \Gamma_2 q_C^c.$
Octet	$N^{N} \equiv \epsilon^{ABD}(\boldsymbol{\lambda}^{N})_{DC} \epsilon_{abc}(q_{A}^{aT}C\Gamma_{1}q_{B}^{b})\Gamma_{2}q_{C}^{c}.$
Decuplet	$\Delta^P \equiv S_P^{ABC} \epsilon_{abc} (q_A^{aT} C \Gamma_1 q_B^b) \Gamma_2 q_C^c.$

$$\Lambda_{1} = \epsilon_{abc} \epsilon^{ABC} (q_{A}^{aT} C q_{B}^{b}) \gamma_{5} q_{C}^{c},$$

$$\Lambda_{2} = \epsilon_{abc} \epsilon^{ABC} (q_{A}^{aT} C \gamma_{5} q_{B}^{b}) q_{C}^{c},$$

$$\Lambda_{3} = \epsilon_{abc} \epsilon^{ABC} (q_{A}^{aT} C \gamma_{\mu} \gamma_{5} q_{B}^{b}) \gamma^{\mu} q_{C}^{c},$$

$$\Lambda_{4} = \epsilon_{abc} \epsilon^{ABC} (q_{A}^{aT} C \gamma_{\mu} q_{B}^{b}) \gamma^{\mu} \gamma_{5} q_{C}^{c},$$
Not all of them are independent

Me $\Lambda_5 = \epsilon_{abc} \epsilon^{ABC} (q_A^{aT} C \sigma_{\mu\nu} q_B^b) \sigma_{\mu\nu} \gamma_5 q_C^c$. 0

44

Local fields

	Flavor			Chiral				
	Octet	2 I	B ₊ , B-	$(3,\overline{3}) + (\overline{3},3)$ (8,1) + (1,8)				
	Singlet	1	Λ	$(3,\overline{3}) + (\overline{3},3)$				
γ_{μ}	$\partial^{\mu} N_{1\mu}^{N}$	$= \partial^{\mu} \epsilon^{ABD}$	$\lambda_{DC}^{N}(\tilde{q}_{A}\gamma_{5}q_{B})$	$\gamma_{\mu}q_{C}$				
	$N^N_{3\mu}$	$\lambda_{\nu} = -\epsilon^{ABD} \lambda_D^N$	$_{DC}^{N}(\tilde{q}_{A}\gamma_{\mu}q_{B})\gamma_{\nu}q_{C}+(\mu\leftrightarrow\nu)$					
	Octet		Β' _(μ)	(6.3) + (3.6)				
	Decuplet		$\Delta'_{(\mu)}$					
			$\Delta'_{(\mu\nu)}$	(10,1) + (1,10)				

May 27, 2010

YITP molecule, EXIHC10

Chiral	$SU(3)_L\otimes SU(3)_R$	$SU(3)_F$		g_A^0	g_A^3	g_A^8	α
Unital		1	Λ	-1	—	—	_
transformations		_	N_	-1	1	-1	
	(3, 3) ⊕ (3, 3)		Σ_{-}	-1	0	2	
(λ^0)		8	≓	-1 -1	-1	-1 -2	1
$\mathbf{U}(1)_{\mathbf{A}}: q \to \exp\left(i\gamma_5 \frac{\alpha}{2}b_0\right)q = q + \delta_5 q,$			N	3	1	3	
$(\vec{\lambda} \rightarrow)$			Σ_{+}	3	1	0	
$SU(3)_{\mathbf{A}}: q \to \exp\left(i\gamma_5\frac{\pi}{2}\cdot b\right)q = q + \delta_5^b q,$	(8, 1) ⊕ (1, 8)	8	Ξ_+	3	1	-3	0
. ,			Λ_+	3	_	0	
			N_{μ}	1	5/3	1	
		8	Σ_{μ}	1	$\frac{2}{3}$	2	3/5
		0	Λ^{μ}_{μ}	1	1/5	-2^{-3}	575
	(3 , 6) ⊕ (6 , 3)		Δ,,	1	1/3	1	
			Σ^{μ}_{μ}	1	1/3	0	
		10	Ξ^*_{μ}	1	1/3	-1	_
			Ω_{μ}	1	_	-2	
			$\Delta_{\mu\nu}$	3	1	3	
	(10, 1) ⊕ (1, 10)	10	$\Xi^{\mu\nu}$	3	1	-3	_
	($\tilde{\Omega}^{\mu\nu}_{\mu\nu}$	3	_	-6	
May 27, 2010 YITI	J						

Mixing and							
wixing and	case fi	eld	$g^{(0)}_A$	$g_A^{(1)}$	F	D	$SU_L(3) \times SU_R(3)$
g _A	ΙΛ	$N_1 - N_2$	-1	+1	0	+1	$(\overline{3},\overline{3})\oplus(\overline{3},\overline{3})$
	II A	$N_1 + N_2$	+3	+1	+1	0	$(8,1)\oplus(1,8)$
	III A	$N_{1}^{\prime}-N_{2}^{\prime}$	+1	-1	0	-1	$(\overline{3},3)\oplus(\overline{3},\overline{3})$
	IV A	$N_{1}' + N_{2}'$	-3	-1	-1	0	$(1,8)\oplus(8,1)$
	0∂	$\mu (N_3^{\mu} + \frac{1}{3}N_4^{\mu})$	+1	$+\frac{5}{3}$	$+\frac{2}{3}$	+1	$(6,3) \oplus (3,6)$

(0,I,II), (0, I, III) Mixing of *three* components with *two* angles

case	$g_{A \text{ expt.}}^{(3)}$	$g_{A \text{ expt.}}^{(0)}$	θ	arphi	F	D	F/D
I-II	1.267	0.33	39.3°	$28.0^o \pm 2.3^o$	0.399 ± 0.02	$0.868 {\mp} 0.02$	0.460 ± 0.04
	Inp	out			Exp F	/D = 0.57	1 ± 0.005

$$g_{A}^{(0)} \sim \Delta u + \Delta d + \Delta s$$

$$g_{A}^{(3)} \sim \Delta u - \Delta d$$

$$g_{A}^{(8)} \sim \Delta u + \Delta d - 2\Delta s$$
May 27, 2010
$$3 \text{ valence quarks => } \Delta s = 0$$
F/D is not reproduced
$$F/D \text{ is not reproduced}$$
Need of multi-quark components

Furthermore

Construct chiral invariant Lagrangians of SU(3)xSU(3)

Study of various properties: masses, couplings, decays

Property changes toward symmetry restoration

Problems/Questions

- What is the origin of the mass, especially of chiral scalar?
- Another source of g_A?
- How we can look into chiral structure of physical hadrons?
- What experiments are available to look into chiral structure?
- Do particles belonging to a chiral representation has the common spin?

Derivative terms

$$\left(\frac{g_A-1}{v^2}\right)\left[\left(\bar{\psi}\gamma_\mu\frac{\tau}{2}\psi\right)\cdot\left(\pi\times\partial^\mu\pi\right)+\left(\bar{\psi}\gamma_\mu\gamma_5\frac{\tau}{2}\psi\right)\cdot\left(\sigma\partial^\mu\pi-\pi\partial^\mu\sigma\right)\right]$$

Arbitrary g_A

Is this related to chiral representations?

May 27, 2010