Exotic hadrons from relativistic heavy ion collisions

Che-Ming Ko Texas A&M University

- Charmed tetraquark mesons and pentaquark baryons
- Charm production in HIC
- Thermal vs coalescence production
- D_{sJ}(2317): diquark or tetraquark
- Diomega $(\Omega\Omega)_{0+}$
- Λ_c from sQGP

Supported by US National Science Foundation and the Welch Foundation

Quark color-spin interaction and hadron masses

Lee, Yasui, Liu, and Ko, EJPC 54, 259 (2008)

Baryon mass differences

Mass Difference	$M_{\Delta} - M_N$	$M_{\Sigma} - M_{\Lambda}$	$M_{\Sigma_c} - M_{\Lambda_c}$
Formula	$\frac{3C_B}{2m_c^2}$	$\frac{C_B}{m_u^2} \left(1 - \frac{m_u}{m_g}\right)$	$\frac{C_B}{m_u^2} \left(1 - \frac{m_u}{m_c}\right)$
Fit	290 MeV	77 MeV	154 MeV
Experiment	290 MeV	$75 { m MeV}$	170 MeV

Diquark
$$\sum \frac{C_B}{m_i m_j} [s_i \cdot s_j]$$

 $m_u = m_d = 300 \text{ MeV}, \ m_s = 500 \text{ MeV}, \ m_c = 1500 \text{ MeV}, \ m_b = 4700 \text{ MeV}$

• Meson mass differences
Quark-antiquark
$$\sum \frac{C_M}{m_i m_j} [s_i \cdot s_j]$$

$$\boxed{\text{Mass Difference } M_{\rho} - M_{\pi} M_{K^*} - M_K M_{D^*} - M_D M_{B^*} - M_B}$$
Formula
$$\boxed{\frac{C_M}{m_u^2}} \frac{C_M}{m_u m_s} \frac{C_M}{m_u m_c} \frac{C_M}{m_u m_b}$$
Fit
$$\boxed{635 \text{ MeV} 381 \text{ MeV} 127 \text{ MeV} 41 \text{ MeV}}$$
Experiment
$$\boxed{635 \text{ MeV} 397 \text{ MeV} 137 \text{ MeV} 46 \text{ MeV}}$$

Works very well with $3 \times C_B = C_M = 635 m_u^2$

2

Tetraquark mesons

Table 3. Tetraquark mesons $T_{q_1q_2}(ud\bar{q}_1\bar{q}_2)$ with spin S = 1 for $q_1 = q_2$, where $q_1, q_2 = s, c$ and b. Units are in MeV

$T_{q_1q_2} (S=1) \\ -\frac{3}{4} \frac{C_B}{m_u^2} + \frac{1}{4} \frac{C_B}{m_{q_1}^2}$	$u\bar{q}_1 (S = 1)$ $\frac{1}{4} \frac{C_M}{m}$	$d\bar{q}_2 \ (S = 0) \\ - \frac{3}{4} \frac{C_M}{m_u m_{q_1}}$	$T_{q_1q_2}$ $-u\bar{q}_1 - u\bar{q}_2$
T_{ss}	$\overline{4 \ \overline{m_u m_{q_1}}}$ K^*	K	
-127 T_{cc}	92 D^*	-285 D	63
-143 T_{bb}	31 B^*	-95 B	-79
-145	10	-30	-124

Table 4. Tetraquark mesons $T_{q_1q_2}(ud\bar{q}_1\bar{q}_2)$ with spin S = 0 for $q_1 \neq q_2$. $q_1, q_2 = s, c$ and b. Units are in MeV

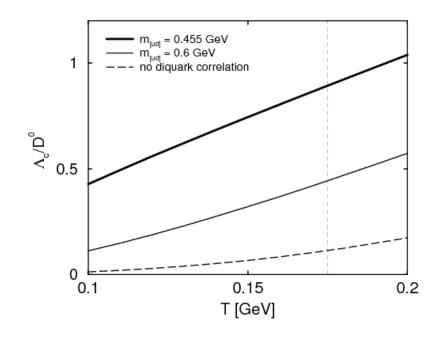
$T_{q_1q_2} \ (S=0)$	$u\bar{q}_1~(S=0)$	$d\bar{q}_2~(S=0)$	$T_{q_{1}q_{2}}$
$-\frac{3}{4}\frac{C_B}{m_u^2} - \frac{3}{4}\frac{C_B}{m_{q_1}m_{q_2}}$	$-rac{3}{4}rac{C_M}{m_u m_{q_1}}$	$-\frac{3}{4}\frac{C_M}{m_u m_{q_2}}$	$-u\bar{q}_1-u\bar{q}_2$
T_{sc}	K	D	
-162	-285	-95	218
T_{sb}	K	B	
-150	-285	-30	165
T_{cb}	D	B	
-146	-95	-30	-21

Pentaquark baryons

Table 7. Charm– and bottom–strange pentaquark baryons $\Theta_{qs}(udus\bar{q})$ (q = c and b) with spin S = 1/2. Units are in MeV

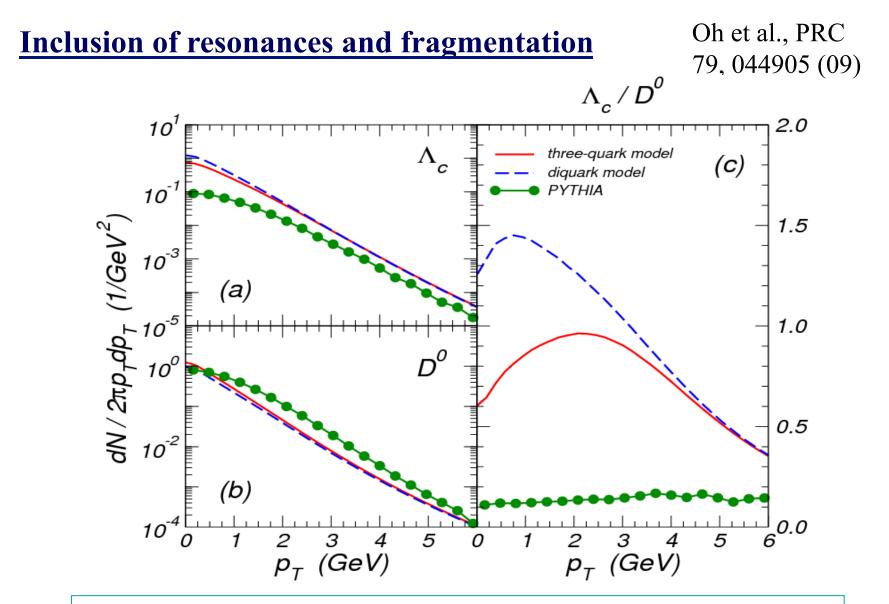
	$N - \frac{3}{4} \frac{C_M}{m_v^2}$	$-rac{sar{q}}{4}rac{C_M}{m_um_q}$	$\Theta_{qs}-N-s\bar{q}$
$\Theta_{qs} = -rac{3}{4}rac{C_B}{m_u^2} - rac{3}{4}rac{C_B}{m_u m_s}$	$\frac{\Sigma}{\frac{1}{4}\frac{C_B}{m_u^2} - \frac{C_B}{m_u m_s}}$	$-\frac{d\bar{q}}{4}\frac{C_M}{m_u m_q}$	$\Theta_{qs}-\varSigma-d\bar{q}$
$4 m_u^2 - 4 m_u m_s$	$4 \frac{m_u^2}{M} - \frac{m_u m_s}{4 \frac{C_B}{m_u^2}}$	$-\frac{4}{4} \frac{m_u m_q}{m_q}$ $-\frac{3}{4} \frac{C_M}{m_u m_q}$	$\Theta_{qs} - \Lambda - u \bar{q}$
	$-\frac{1}{4}\frac{1}{m_{u}^{2}}$	$-\frac{1}{4} \overline{m_u m_q}$	
	Ν	D_s	$\Theta_{cs} - N - D_s$
	-145	-57	-30
Θ_{cs}	Σ	D	$\Theta_{cs} - \Sigma - D$
-232	-67	-95	-69
	Λ	D	$\Theta_{cs} - \Lambda - D$
	-145	-95	8
	Ν	B_s	$\Theta_{hs} - N - B_s$
	-145	-18	-68
Θ_{bs}	Σ	В	$\Theta_{hs} - \Sigma - B$
-232	-67	-30	-133
	Λ	В	$\Theta_{hs} - \Lambda - B$
	-145	-30	-56

Diquark in sQGP and Λ_c enhancement Lee, Yasui, Ohnishi, Yoo & Ko, PRL 100, 222301 (08)

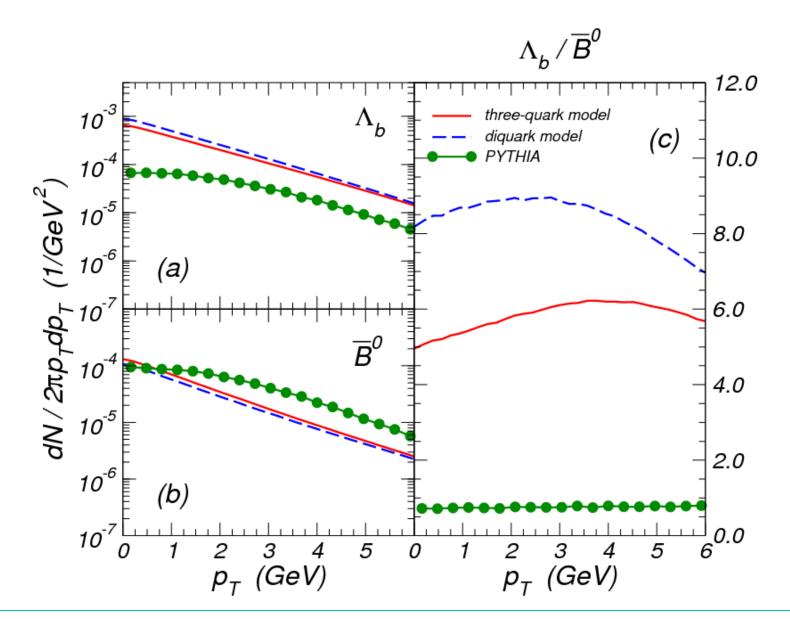

Diquark mass due to color-spin interaction:

$$m_{[ud]} \approx m_u + m_d - C \vec{s}_u \cdot \vec{s}_d \frac{1}{m_u m_d} \approx 450 \,\mathrm{MeV}$$

for $m_u = m_d = 300 \text{ MeV}$ and $C/m_u^2 \sim 195 \text{ MeV}$ from $m_\Delta - m_N$

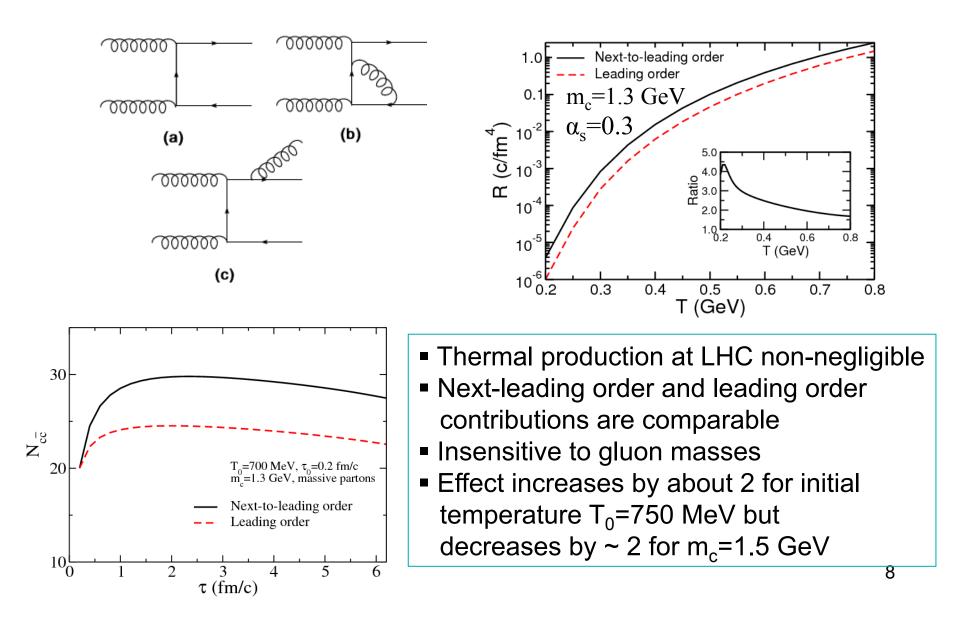

Coalescence model

Statistical model



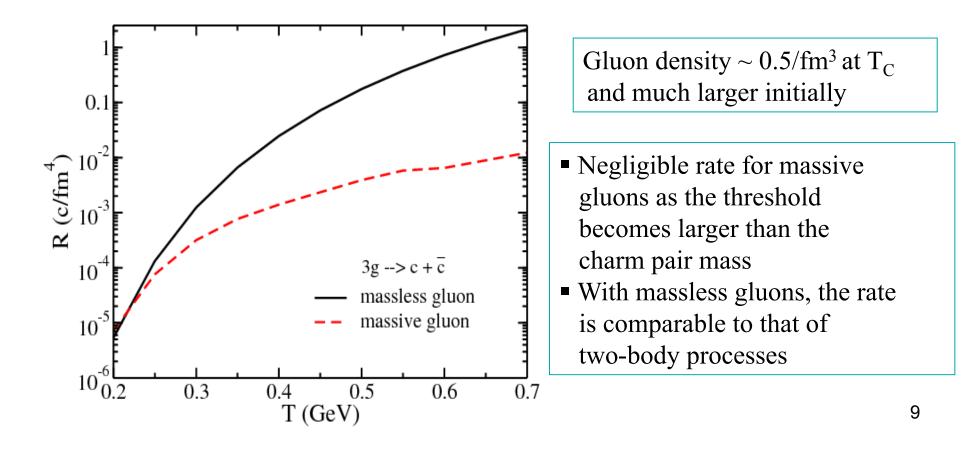
$$\frac{\Lambda_{\rm c}}{D_0} \approx 2 \left(\frac{m_{\Lambda_{\rm c}}}{m_{D_0}}\right)^{3/2} e^{-\left(m_{\Lambda_{\rm c}} - m_{D_0}\right)T_{\rm c}} \approx 0.24$$

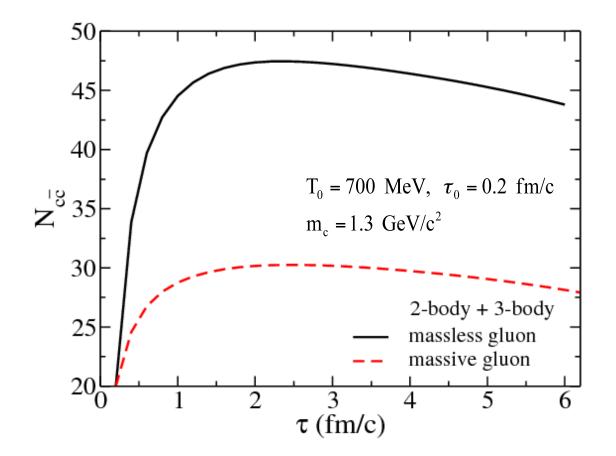
• Enhanced by a factor of 4-8 • Similar for $\Lambda_{\rm B}/{\rm B}_0$



Including coalescence contribution enhances Λ_c/D^0 ratio, which is further enhanced by the presence of diquarks in QGP

As for Λ_c/D^0 , including coalescence contribution enhances Λ_b/B^0 ratio, and it is further enhanced by the presence of diquarks in QGP

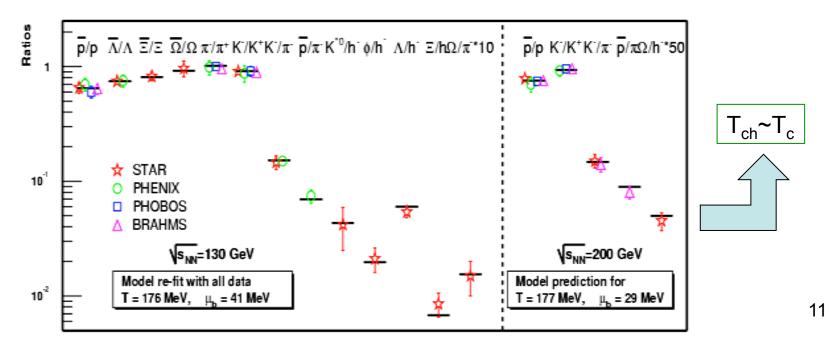

Thermal charm production in QGP PRC 77, 024901 (08)


<u>Charm production from three-gluon interaction ggg→cc</u>

Determine rate for $ggg \rightarrow c\overline{c}$ from $c\overline{c} \rightarrow ggg$ via detailed balance

$$\mathbf{R} \propto \frac{1}{3} \int \prod_{i=1}^{5} d^{3} p_{i} f_{i}(p_{i}) \left| \mathbf{M}_{ggg \rightarrow c\bar{c}} \right|^{2} \delta^{(4)}(p_{1} + p_{2} + p_{3} - p_{4} - p_{5}) \propto \left\langle \sigma_{c\bar{c} \rightarrow ggg} \mathbf{v} \right\rangle \mathbf{n}_{c}^{eq} \mathbf{n}_{\bar{c}}^{eq}$$

Charm production at LHC


Significant thermal production of charms from QGP of massless gluons

Statistical model

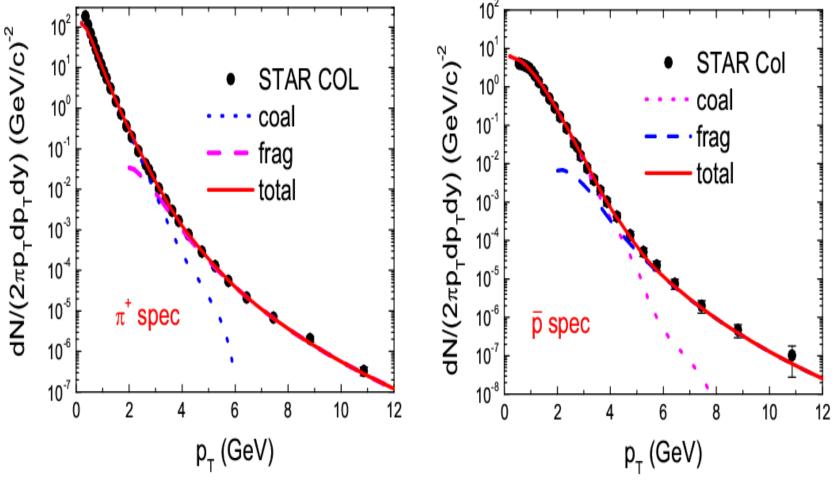
Assume thermally and chemically equilibrated system of non-interacting hadrons and resonances with density

$$n_{i} = \frac{g}{2\pi^{2}} \int_{0}^{\infty} \frac{p^{2} dp}{e^{(E_{i}(p) - \mu_{i})/T} \pm 1}, \quad E_{i} = \sqrt{p^{2} + m_{i}^{2}}$$

Determine chemical freeze out temperature T_{ch} and baryon chemical potential μ_B by fitting experimental data after inclusion of feed down from short-lived particles and resonances decay.

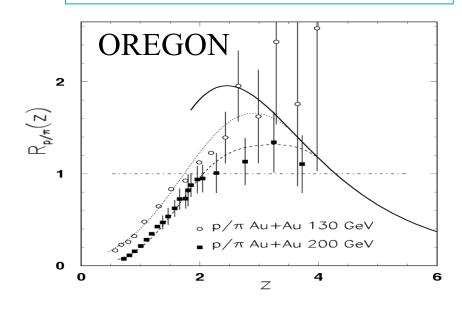
Coalescence model

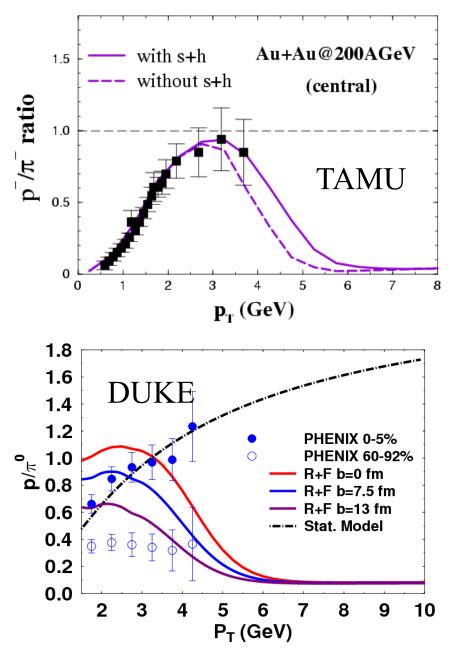
Greco, Ko & Levai, PRL 90, 202102 (2003); PRC 68, 034904 (2003)


Number of hadrons with n quarks and/or antiquarks

$$\begin{split} N_{n} = g \int \prod_{i=1}^{n} p_{i} d\sigma_{i} \frac{dp_{i}}{(2\pi)^{3} E_{i}} f_{q,i}(x_{i}, p_{i}) f_{n}(x_{1}, ..., x_{n}; p_{1}, ..., p_{n}) \\ \\ \text{Spin-color} \\ \text{statistical factor} \\ \textbf{g}_{M} \quad \text{e.g.} \quad \textbf{g}_{\pi} = \textbf{g}_{K} = 1/36 \quad \textbf{g}_{\rho} = \textbf{g}_{K^{*}} = 1/12 \\ \\ \textbf{g}_{p} = \textbf{g}_{\overline{p}} = 1/108, \quad \textbf{g}_{\Delta} = \textbf{g}_{\overline{\Delta}} = 1/54 \\ \\ \text{Quark distribution} \\ \text{function} \\ \textbf{f}_{q}(\mathbf{x}, \mathbf{p}) \quad \int \mathbf{p} \cdot d\sigma \frac{d^{3}p}{(2\pi)^{3} E} f_{q}(\mathbf{x}, \mathbf{p}) = N_{q} \\ \\ \text{Coalescence} \\ \text{probability} \\ \text{function} \\ \textbf{\Delta}_{x} \cdot \boldsymbol{\Delta}_{p} \geq \hbar \\ \hline \textbf{h}_{X} \cdot \boldsymbol{\Delta}_{p} \geq \hbar \\ \end{split}$$

For baryons, Jacobi coordinates for three-body system are used.


Proton and pion transverse momentum spectra


Central Au+Au collisions at s^{1/2}=200 GeV

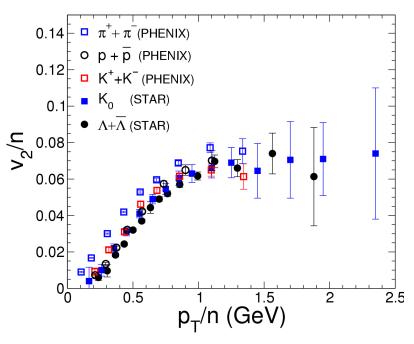
Large proton to pion ratio

Quark coalescence or recombination can explain the surprizingly large p/π ratio at intermediate transverse momentum observed in central Au+Au collisions.

Constituent quark number scaling of elliptic flow

For quarks with same momentum to coalesce, i.e., $\Delta p=0$

Quark transverse momentum distribution

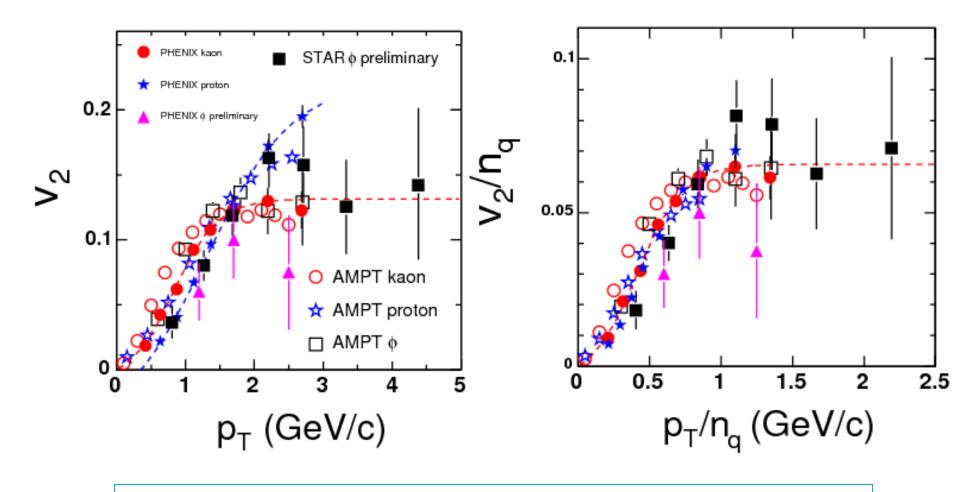

 $f_q(p_T) \propto 1 + 2v_{2,q}(p_T)\cos(2\phi)$

Meson elliptic flow

$$v_{2,M}(p_T) = \frac{2v_{2,q}(p_T/2)}{1 + 2v_{2,q}^2(p_T/2)} \approx 2v_{2,q}(p_T/2)$$

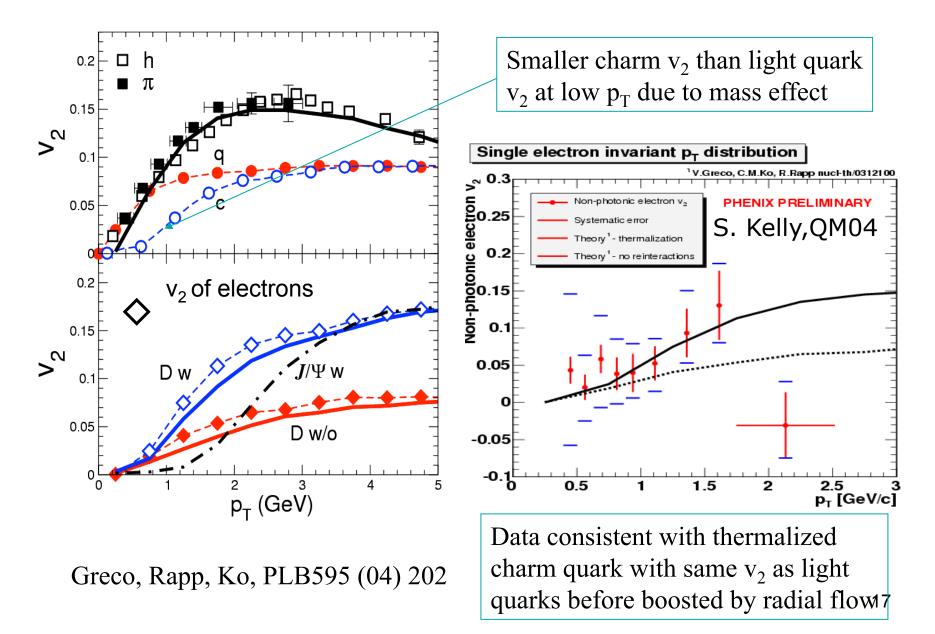
Baryon elliptic flow

$$v_{2,B}(p_T) = \frac{3v_{2,q}(p_T/3)}{1 + 6v_{2,q}^2(p_T/3)} \approx 3v_{2,q}(p_T/3)$$



Quark number scaling of hadron v_2 (except pions):

$$\frac{1}{n}\mathbf{v}_{2}(\mathbf{p}_{\mathrm{T}}/\mathbf{n})$$


same for mesons and baryons

Phi flow from AMPT J.H. Chen & Ma et al., PRC 74, 064902 (2006)

Phi meson v_2 is similar to that of kaon \rightarrow quark number scaling

Charmed meson elliptic flow

Charm exotics production in HIC

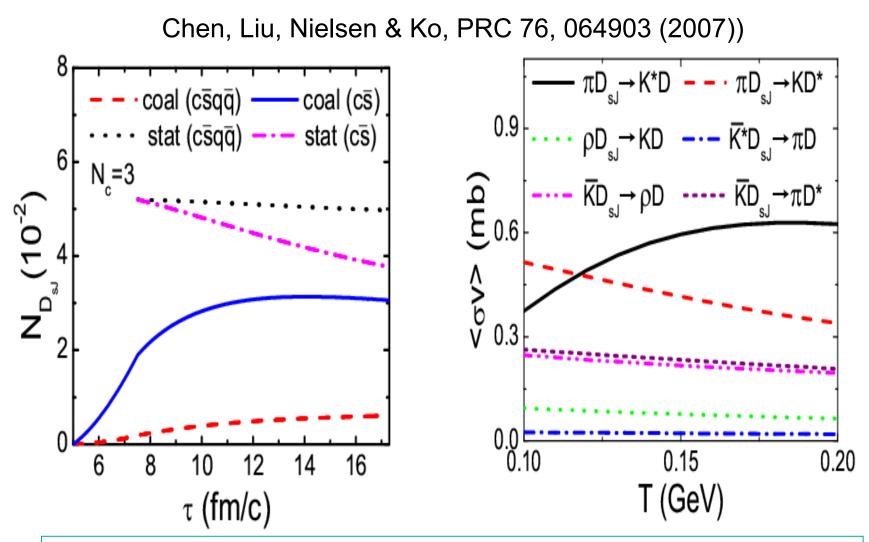
Lee, Yasui, Liu & Ko Eur. J. Phys. C 54, 259 (08)

- Charm tetraquark mesons
 - $T_{cc}(ud\overline{c}\overline{c})$ is ~ 80 MeV below D+D^{*}
 - Coalescence model predicts a yield of ~5.5X10⁻⁶ in central Au+Au collisions at RHIC and ~9X10⁻⁵ in central Pb+Pb collisions at LHC if total charm quark numbers at mid-rapidity are 3 and 20, respectively
 - Yields increase to 7.5X10⁻⁴ and 8.6X10⁻³, respectively, in the statistical model
- Charmed pentaquark baryons
 - $\Theta_{cs}(udus\overline{c})$ is ~ 70 MeV below D+ Σ , ~ 30 MeV below N+D_s, but ~ 8 MeV above Λ +D
 - Yield is ~1.2X10⁻⁴ at RHIC and ~7.9X10⁻⁴ at LHC from the coalescence model for total charm quark numbers of 3 and 20, respectively
 - Statistical model predicts much larger yields of ~4.5X10⁻³ at RHIC and ~2.7X10⁻² at LHC

Decay modes of T_{cc} and \Theta_{cs}

Table 8. Possible decay modes of T_{cc} . In the bottom row, we would observe the correlations $(K^+\pi^-)(K^+\pi^-)\pi^-$ and $(K^+\pi^+\pi^+\pi^-)(K^+\pi^-)\pi^-$ in the final states. See the text for details

Threshold	Decay mode	Lifetime
$\label{eq:masses} \begin{split} \overline{M_{T_{cc}} > M_{D^*} + M_D} \\ 2M_D + M_\pi < M_{T_{cc}} < M_{D^*} + M_D \\ M_{T_{cc}} < 2M_D + M_\pi \end{split}$	$\begin{array}{c} D^{*-}\bar{D}^{0}\\ \bar{D}^{0}\bar{D}^{0}\pi^{-}\\ D^{*-}K^{+}\pi^{-}, D^{*-}K^{+}\pi^{+}\pi^{-}\pi^{-}\end{array}$	hadronic decay hadronic decay 0.41×10^{-12} s

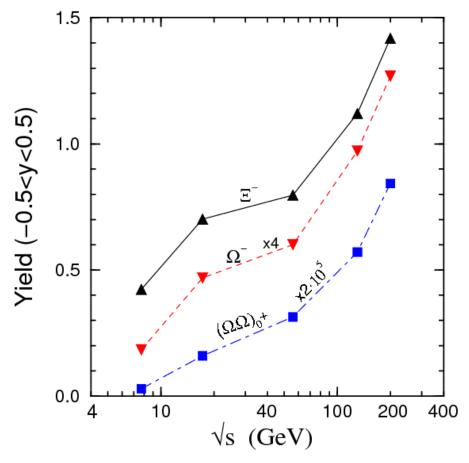

Table 9. Possible decay modes of Θ_{cs}

Threshold	Decay mode	Lifetime
$M_{\Theta_{cs}} > M_N + M_{D_s}$	pD_s^-	hadronic decay
$M_A + M_D < M_{\Theta_{cs}} < M_N + M_{D_s}$	$A\overline{D}^{0}$ AD^{-}	hadronic decay hadronic decay
$M_{\Theta_{cs}} < M_A + M_D$	$\begin{array}{c} \Lambda K^{+}\pi^{-},\Lambda K^{+}\pi^{+}\pi^{-}\pi^{-}\\ \Lambda K^{+}\pi^{-}\pi^{-} \end{array}$	$0.41 \times 10^{-12} \text{ s}$ $1.0 \times 10^{-12} \text{ s}$

<u>**D**</u>_{si}(2317): 0⁺

- Mass of 2317 MeV less than those predicted by quark model and QCD sum rule for two-quark state (cs̄) but comparable to those for four-quark state (cs̄ qq̄)
- Width of a few (four-quark) to a few tens (two-quark) keV from decay to $D_s\pi$, empirically less than 4.6 MeV limited because of experimental resolution.
- Observed in elementary reactions:
 - BABAR: from $D_s + \pi^0$ inclusive invariant mass distribution in e^+e^- annihilation (PRL 90, 242001 (03))
 - Belle: from B decay (PRL 91, 262002 (03))

D_{sJ} production at RHIC



- Cross sections shown are for four-quark state and are larger by ~9 for two-quark state.
- Final yield is sensitive to the quark structure of D_{sJ}

Diomega

According to the chiral quark model of Zhang et al. (PRC 61, 065204 (2000)), diomega $(\Omega\Omega)_{0+}$ is bound by ~ 116 MeV with a root-mean-square radius

~ 0.84 fm and lifetime ~ 10^{-10} sec.

Pal, Ko & Zhang, PLB 624, 210 (05)

No.	Channel
Ι	$\Omega + \Omega \rightarrow (\Omega \Omega)_0 + \gamma$
II	$\Omega + \Omega \rightarrow (\Omega \Omega)_0 + \eta$
III	$\Omega + \Omega \rightarrow (\Omega \Omega)_0 + \eta'$
IV	$\Omega + \Omega \rightarrow (\Omega \Omega)_0 + \phi$
V	$\Omega + \Xi \rightarrow (\Omega \Omega)_0 + K$
VI	$\Omega + \Xi \rightarrow (\Omega \Omega)_0 + K^*$
VII	$\Omega + N \rightarrow (\Omega N)_2 + \gamma$
VIII	$\Omega + N \rightarrow (\Omega N)_2 + \pi$
IX	$\Omega + (\Omega N)_2 \rightarrow (\Omega \Omega)_0 + N$

- Cross sections for I-VI are ~ 2-25 μb and thus unimportant.
- Production is dominated by two-step processes through VII, VIII (~ 50-175 µb) and IX (~ 20-50 mb).
- Yield is order of magnitude larger in statistical or coalescence model.

Summary

- Possible existence of tetraquark meson $T_{cc}(udcc)$ and pentaquark baryon $\Theta_{cs}(udusc)$ due to attractive diquark spin-spin interaction
- Diquarks leads to enhanced Λ_c production in sQGP
- Enhanced charm production at LHC → factory for studying charmed exotics
- Thermal vs quark coalescence production of hadrons
- Larger yield of exotic hadrons in thermal production than from quark coalescence
- Yield of D_{sJ} (2317) in HIC is sensitive to its quark structure
- HIC allows for the study of $\Omega\Omega$ interaction and possible existence of $(\Omega\Omega)_{0+}$