Exotic hadrons from fragmentation functions

Shunzo Kumano

High Energy Accelerator Research Organization (KEK) Graduate University for Advanced Studies (GUAS)

shunzo.kumano@kek.jp
http://research.kek.jp/people/kumanos/

YIPQS (Yukawa International Program for Quark-Hadron Sciences) workshop on Exotics from Heavy Ion Collisions

YITP, Kyoto, Japan, May 17 - 30, 2010

May 20, 2010

Contents

- (1) Introduction to fragmentation functions
- (2) Determination of fragmentation functions
 For π, K, p
- (3) Fragmentation functions for finding exotic hadrons
 - For example, $f_0(980)$

Refs. (1) M. Hirai, S. Kumano, T.-H. Nagai, K. Sudoh, PRD 75 (2007) 094009.
(2) M. Hirai, S. Kumano, M. Oka, K. Sudoh, PRD 77 (2008) 017504.
S. Kumano, V. R. Pandharipande, PRD 38 (1988) 146.
F. E. Close, N. Isgur, S. Kumano, NPB 389 (1993) 513.

Major contribution has been made especially on (2) by Masanori Hirai (Tokyo University of Science).

Introduction to Fragmentation Functions

Fragmentation Functions

e

Fragmentation: hadron production from a quark, antiquark, or gluon

$$z \equiv \frac{E_h}{\sqrt{s/2}} = \frac{2E_h}{Q} = \frac{E_h}{E_q}, \quad s = Q^2$$

Fragmentation function is defined by

γ, Z

 $F^{h}(z,Q^{2}) = \frac{1}{\sigma_{tot}} \frac{d\sigma(e^{+}e^{-} \to hX)}{dz}$ $\sigma_{tot} = \text{total hadronic cross section}$

Variable z

Hadron energy / Beam energy

• Hadron energy / Primary quark energy

A fragmentation process occurs from quarks, antiquarks, and gluons, so that F^h is expressed by their individual contributions:

$$F^{h}(z,Q^{2}) = \sum_{i} \int_{z}^{1} \frac{dy}{y} C_{i}\left(\frac{z}{y},Q^{2}\right) D_{i}^{h}(y,Q^{2})$$

Calculated in perturbative QCD

 \overline{q}

q

Non-perturbative (determined from experiments)

 $C_i(z,Q^2) = \text{coefficient function}$ $D_i^h(z,Q^2) = \text{fragmentation function of hadron } h \text{ from a parton } i$

Momentum (energy) sum rule

 $D_i^h(z,Q^2)$ = probability to find the hadron *h* from a parton *i* with the energy fraction *z*

Energy conservation: $\sum_{h} \int_{0}^{1} dz \, z \, D_{i}^{h} \left(z, Q^{2} \right) = 1$ $h = \pi^{+}, \ \pi^{0}, \ \pi^{-}, \ K^{+}, \ K^{0}, \ \bar{K}^{0}, \ K^{-}, \ p, \ \bar{p}, \ n, \ \bar{n}, \ \cdots$

Favored and disfavored fragmentation functions

Simple quark model: $\pi^+(u\overline{d}), K^+(u\overline{s}), p(uud), \cdots$

Favored fragmentation: $D_u^{\pi^+}$, $D_{\bar{d}}^{\pi^+}$, ...

(from a quark which exists in a naive quark model) **Disfavored** fragmentation: $D_d^{\pi^+}$, $D_{\bar{u}}^{\pi^+}$, $D_s^{\pi^+}$, ...

(from a quark which does not exist in a naive quark model)

Parton Distribution Functions (PDFs)

Favored fragmentation functions

↔ Valence-quark distribution functions
Disfavored fragmentation functions

↔ Sea-quark and gluon distribution functions

However, the PDFs would not be used for unstable exotic hadrons in studying internal configuration.

Purposes of investigating fragmentation functions Semi-inclusive reactions have been used for investigating • origin of proton spin $\vec{e} + \vec{p} \rightarrow e' + h + X$, $\vec{p} + \vec{p} \rightarrow h + X$ (RHIC-Spin) Quark, antiquark, and gluon contributions to proton spin (flavor separation, gluon polarization)

• properties of quark-hadron matters $A + A' \rightarrow h + X$ (RHIC, LHC) Nuclear modification (recombination, energy loss, ...)

$$\sigma = \sum_{a,b,c} f_a(x_a, Q^2) \otimes f_b(x_b, Q^2)$$
$$\otimes \hat{\sigma}(ab \to cX) \otimes D_c^{\pi}(z, Q^2)$$

• Exotic-hadron search

Exotic-hadron search by fragmentation functions

Favored** and *disfavored** (unfavored) fragmentation functions **•** Possibility of finding exotic hadrons in high-energy processes

 $e.g. \text{ if } f_0(980) = s\overline{s} : \text{ favored } s \to f_0, \ \overline{s} \to f_0$ disfavored $u \to f_0, \ d \to f_0, \ \overline{u} \to f_0, \ \overline{d} \to f_0, \cdots$ $f_0(980) = \frac{1}{\sqrt{2}}(u\overline{u} + d\overline{d}), \ s\overline{s}, \ \frac{1}{\sqrt{2}}(u\overline{u}s\overline{s} + d\overline{d}s\overline{s}), \ K\overline{K}, \text{ or } gg$

 $f_0(980)$ in heavy-ion reactions: *e.g.* L. Maiani *et al.*, PLB 645 (2007) 138; C. Nonaka *et al.*, PRC69 (2004) 031902. (I am sorry if I miss your works.)

 \rightarrow tomorrow's (May 21) program at this workshop

Situation of fragmentation functions (before 2007) There are two widely used fragmentation functions by Kretzer and KKP. An updated version of KKP is AKK. See also Bourhis-Fontannaz-Guillet-We

(Kretzer) S. Kretzer, PRD 62 (2000) 054001

See also Bourhis-Fontannaz-Guillet-Werlen (2001) for FFs without hadron separation.

(KKP) B. A. Kniehl, G. Kramer, B. Pötter, NPB 582 (2000) 514

(AKK) S. Albino, B.A. Kniehl, G. Kramer, NPB 725 (2005) 181

The functions of Kretzer and KKP (AKK) are very different.

Determination of Fragmentation Functions $(\pi, K, p / \bar{p})$

Ref. M. Hirai, SK, T.-H. Nagai, K. Sudoh Phys. Rev. D75 (2007) 094009.

Code for calculating the fragmentation functions is available at http://research.kek.jp/people/kumanos/ffs.html .

New aspects in our analysis (compared with Kretzer, KKP, AKK)

- Determination of fragmentation functions (FFs) and their uncertainties (our work is the first uncertainty estimate in FFs) in LO and NLO.
- Discuss NLO improvement in comparison with LO by considering the uncertainties. (Namely, roles of NLO terms in the determination of FFs)
- Comparison with other parametrizations
- Avoid assumptions on parameters as much as we can, Avoid contradiction to the momentum sum rule
- SLD (2004) data are included.

Initial functions for pion

Note: constituent-quark composition $\pi^{+} = u\overline{d}$, $\pi^{-} = \overline{u}d$ $D_{u}^{\pi^{+}}(z, Q_{0}^{2}) = N_{u}^{\pi^{+}} z^{\alpha_{u}^{\pi^{+}}} (1-z)^{\beta_{u}^{\pi^{+}}} = D_{\overline{d}}^{\pi^{+}}(z, Q_{0}^{2})$ $D_{\overline{u}}^{\pi^{+}}(z, Q_{0}^{2}) = N_{\overline{u}}^{\pi^{+}} z^{\alpha_{\overline{u}}^{\pi^{+}}} (1-z)^{\beta_{\overline{u}}^{\pi^{+}}} = D_{d}^{\pi^{+}}(z, Q_{0}^{2}) = D_{s}^{\pi^{+}}(z, Q_{0}^{2}) = D_{\overline{s}}^{\pi^{+}}(z, Q_{0}^{2})$ $D_{c}^{\pi^{+}}(z, m_{c}^{2}) = N_{c}^{\pi^{+}} z^{\alpha_{c}^{\pi^{+}}} (1-z)^{\beta_{c}^{\pi^{+}}} = D_{\overline{c}}^{\pi^{+}}(z, m_{c}^{2})$ $D_{b}^{\pi^{+}}(z, m_{b}^{2}) = N_{b}^{\pi^{+}} z^{\alpha_{b}^{\pi^{+}}} (1-z)^{\beta_{b}^{\pi^{+}}} = D_{\overline{b}}^{\pi^{+}}(z, m_{b}^{2})$ $D_{g}^{\pi^{+}}(z, Q_{0}^{2}) = N_{g}^{\pi^{+}} z^{\alpha_{g}^{\pi^{+}}} (1-z)^{\beta_{g}^{\pi^{+}}}$

Constraint: 2nd moment should be finite and less than 1

 $N = \frac{M}{B(\alpha + 2, \beta + 1)}, \qquad M \equiv \int_0^1 z D(z) \, dz \quad \text{(2nd moment)}, \quad B(\alpha + 2, \beta + 1) = \text{ beta function}$

 $0 < M_i^h < 1$ because of the sum rule $\sum_h M_i^h = 1$

Experimental data for pion

Total number of data: 264

	Collaboration	Lab	\sqrt{s} (GeV)	# of data	
r] 	TASSO TPC HRS TOPAZ SLD	DESY SLAC SLAC KEK SLAC	12,14,22,30,34,4 4 29 29 58	29 18 2 4 29	100 80 2 60
	SLD [light quark] SLD [c quark] SLD [b quark] ALEPH OPAL DELPHI DELPHI [light quark] DELPHI [b quark]	CERN CERN CERN	91.2 91.2 91.2 91.2 91.2	29 29 29 22 22 17 17 17	(A ⁶⁰) 40 20 0

Comparison with pion data

$$F^{\pi^{\pm}}(z,Q^2) = \frac{1}{\sigma_{tot}} \frac{d\sigma(e^+e^- \to \pi^{\pm}X)}{dz}$$

Our fit is successful to reproduce the pion data.

The DELPHI data deviate from our fit at large z.

Rational difference between data and theory

$$\frac{F^{\pi^{\pm}}(z,Q^{2})_{\text{data}} - F^{\pi^{\pm}}(z,Q^{2})_{\text{theory}}}{F^{\pi^{\pm}}(z,Q^{2})_{\text{theory}}}$$

Comparison with other parametrizations in pion

(KKP) Kniehl, Kramer, Pötter
(AKK) Albino, Kniehl, Kramer
(HKNS) Hirai, Kumano, Nagai, Sudoh
(DSS) De Florian, Sassot, Stratmann

- Gluon and light-quark disfavored fragmentation functions have large differences, but they are within the uncertainty bands.
- → The functions of KKP, Kretzer, AKK, DSS, and HKNS are consistent with each other.

$$\hat{s} = x_a x_b s \sim (0.1)^2 (200 \text{ GeV})^2 \text{ for RHIC}$$

$$\sqrt{\hat{s}} = 0.1 \cdot 200 = 20 \text{ GeV}$$

$$z \sim \frac{p_T}{\sqrt{\hat{s}}/2} = \frac{p_T}{10} \sim 0.5 \text{ (relatively large } z\text{)}$$

Hadron model: T. Ito, W. Bentz, I. C. Cloet, A. W. Thomas, K. Yazaki, PRD 80 (2009) 074008.

Expected fragmentation functions by Belle

Expected Belle data by R. Seidl

Current data

Summary I

Determination of the optimum fragmentation functions for π , K, p in LO and NLO by a global analysis of $e^++e^- \rightarrow h+X$ data.

- It was the first time that uncertainties of the fragmentation functions are estimated.
- Gluon and disfavored light-quark functions have large uncertainties. \rightarrow The uncertainties could be important for discussing physics in $\vec{p} + \vec{p} \rightarrow \pi^0 + X$, $A + A' \rightarrow h + X$ (RHIC, LHC), HERMES, COMPASS, JLab, ...

 \rightarrow Need accurate data at low energies (Belle and BaBar).

- For the pion and kaon, the uncertainties are reduced in NLO in comparison with LO. For the proton, such improvement is not obvious.
- Heavy-quark functions are well determined.
- Code for calculating the fragmentation functions is available at http://research.kek.jp/people/kumanos/ffs.html .

Fragmentation Functions for Exotic-Hadron Search $f_0(980)$ as an example

Refs. S. Kumano, V. R. Pandharipande, PRD 38 (1988) 146.
F. E. Close, N. Isgur, S. Kumano, NPB 389 (1993) 513.
M. Hirai, S. Kumano, M. Oka, K. Sudoh, PRD 77 (2008) 017504.

- Introduction to exotic hadrons
 Exotic hadrons at *M* ~ 1 GeV, especially *f*₀(980)
- Criteria for determining internal configurations by fragmentation functions
 Functional forms, Second moments
- Analysis of e⁺ + e⁻→f₀ + X data for determining fragmentation functions for f₀(980)
 Analysis method, Results, Discussions
- Summary II

Recent progress in exotic hadrons

Meson qq **q**³ **Baryon**

q²q² Tetraquark $q^4\bar{q}$ Pentaquark **q**⁶ Dibaryon

... q¹⁰q e.g. Strange tribaryon

Glueball gg

- (Japanese ?) Exotics
- Θ⁺(1540)?: LEPS **Pentaquark?**
- S⁰(3115), S⁺(3140): KEK-PS **Strange tribaryons?**
- X (3872), Y(3940): Belle **Tetraquark**, DD molecule
- D_{sI}(2317), D_{sI}(2460): BaBar, CLEO, Belle $C\overline{S}$ **Tetraquark**, DK molecule
- Z (4430): Belle
 - Tetraquark,...

Note: $Z(4430) \neq q\overline{q}$?

 $c\overline{c}u\overline{d}$, D molecule?

Scalar mesons $J^P = 0^+$ at $M \sim 1$ GeV				
$\frac{\text{Naïve quark-model}}{a_1(1230)} \sigma = f_0(600) = \frac{1}{\sqrt{2}}(u\overline{u} + d\overline{d})$				
+ 1.0 GeV $\frac{1}{f_0(980)} = s\overline{s} \rightarrow \text{denote } f_0 \text{ in this talk}$				
$= \frac{1}{\rho(770)} \qquad a_0(980) = u\overline{d}, \frac{1}{\sqrt{2}}(u\overline{u} - d\overline{d}), d\overline{u}$ + 0.5 GeV $f_0(\overline{600}) = \sigma \qquad \text{Naive model: } m(\sigma) \sim m(a_0) < m(f_0)$				
Strong-decay issue: The experimental widths $\Gamma(f_0, a_0) = 40 - 100$ MeV are too small to be predicted by a typical quark model. $\Gamma(f_0, a_0) = 40 - 100$ MeV are too small to be				
These issues could be resolved if f_0 is a tetraquark $(q q \bar{q} \bar{q})$ or a $K\bar{K}$ molecule, namely an "exotic" hadron.				
$ \begin{bmatrix} f & g & h & \rho_5 & r & A_1 & A_3 & A_2 \\ g & h & \rho_5 & r & A_1 & A_3 & A_2 \\ g = 0 & 1 & 2 & 3 & 4 & 5 & 6 & (0+2)(1+3) & 2 & 0 & 2 \\ 2\pi & Decoy & \pi + \rho & Decoy & B + \pi + \omega $ R. Kokoski and N. Isgur, Phys. Rev. D35 (1987) 907; SK and V. R. Pandharipande, Phys. Rev. D38 (1988) 146.				

Determination of $f_0(980)$ structure
by electromagnetic decaysF. E. Close, N. Isgur, and SK,
Nucl. Phys. B389 (1993) 513.Radiative decay: $\phi \rightarrow S \gamma$ $S=f_0(980), a_0(980)$
 $J^p = 1^- \rightarrow 0^+$ Electric dipole:
er (distance!) $\int p = 1^- \rightarrow 0^+$ E1 transitionElectric dipole:
er (distance!) ϕ $q\bar{q}$ model:
 $\Gamma = small$ $K\bar{K}$ molecule
or $qq\bar{q}\bar{q}$: $\Gamma =$ large

Experimental results of VEPP-2M and DA Φ NE suggest that f_0 is a tetraquark state (or a $K\overline{K}$ molecule?).

CMD-2 (1999): $B(\phi \to f_0 \gamma) = (1.93 \pm 0.46 \pm 0.50) \times 10^{-4}$ SND (2000): $(3.5 \pm 0.3^{+1.3}_{-0.5}) \times 10^{-4}$ KLOE (2002): $(4.47 \pm 0.21_{\text{stat+syst}}) \times 10^{-4}$

For recent discussions,

N. N. Achasov and A. V. Kiselev, PRD 73 (2006) 054029; D74 (2006) 059902(E); D76 (2007) 077501;
Y. S. Kalashnikova *et al.*, Eur. Phys. J. A24 (2005) 437.

See also Belle (2007) $\Gamma(f_0 \rightarrow \gamma \gamma) = 0.205 ^{+0.095}_{-0.083} (\text{stat}) ^{+0.147}_{-0.117} (\text{syst}) \text{ keV}$

Criteria for determining internal structure by fragmentation functions (Naïve estimates)

M. Hirai, S. Kumano, M. Oka, K. Sudoh, PRD 77 (2008) 017504.

Criteria for determining f_0 structure by its fragmentation functions

Discuss 2nd moments and functional forms (peak positions) of the fragmentation functions for f_0 by assuming the above configurations, (1), (2), (3), and (4).

Judgment

Туре	Configuration	2nd Moment	Peak z
Nonstrange 97	$(u\overline{u} + d\overline{d})/\sqrt{2}$	M(s) < M(u) < M(g)	$z_{\max}(s) < z_{\max}(u) \simeq z_{\max}(g)$
Strange $q\overline{q}$	ss	$M(u) < M(s) \leq M(g)$	$z_{\max}(u) < z_{\max}(s) \simeq z_{\max}(g)$
Tetraquark	$(u\overline{u}s\overline{s} + d\overline{d}s\overline{s})/\sqrt{2}$	$M(u) = M(s) \leq M(g)$	$z_{\max}(u) = z_{\max}(s) \simeq z_{\max}(g)$
KK Molecule	$(K^+K^- + K^0\bar{K}^0)/\sqrt{2}$	$M(u) = M(s) \leq M(g)$	$z_{\max}(u) = z_{\max}(s) \simeq z_{\max}(g)$
Glueball	88	M(u) = M(s) < M(g)	$z_{\max}(u) = z_{\max}(s) < z_{\max}(g)$

Since there is no difference between $D_u^{f_0}$ and $D_d^{f_0}$ in the models, they are assumed to be equal. On the other hand, $D_s^{f_0}$ and $D_g^{f_0}$ are generally different from them, so that they should be used for finding the internal structure. Therefore, simple and "model-independent" initial functions are

 $D_{u}^{f_{0}}(z,Q_{0}^{2}) = D_{\overline{u}}^{f_{0}}(z,Q_{0}^{2}) = D_{d}^{f_{0}}(z,Q_{0}^{2}) = D_{\overline{d}}^{f_{0}}(z,Q_{0}^{2}), \quad D_{s}^{f_{0}}(z,Q_{0}^{2}) = D_{\overline{s}}^{f_{0}}(z,Q_{0}^{2}),$ $D_{g}^{f_{0}}(z,Q_{0}^{2}), \quad D_{c}^{f_{0}}(z,m_{c}^{2}) = D_{\overline{c}}^{f_{0}}(z,m_{c}^{2}), \quad D_{b}^{f_{0}}(z,m_{b}^{2}) = D_{\overline{b}}^{f_{0}}(z,m_{b}^{2}).$

2nd moments of favored • and disfavored • fragmentation functions

Actual HKNS07 analysis results (M. Hirai *et al.*, PRD75 (2007) 094009) for the 2nd moments: $M \equiv \int_{0}^{1} zD(z)dz$

	2nd moment
• $D_u^{\pi^+}$	0.401 ± 0.052
• $D_{\bar{u}}^{\pi^+}$	0.094 ± 0.029
• $D_c^{\pi^+}$	0.178 ± 0.018
• $D_b^{\pi^+}$	0.236 ± 0.009
• $D_g^{\pi^+}$	0.238 ± 0.029
• $D_u^{K^+}$	0.0740 ± 0.0268
• $D_{\bar{s}}^{K^+}$	0.0878 ± 0.0506
• $D_{\bar{u}}^{K^+}$	0.0255 ± 0.0173
• $D_c^{K^+}$	0.0583 ± 0.0052
• $D_b^{K^+}$	0.0522 ± 0.0024
• $D_g^{K^+}$	0.0705 ± 0.0099

There is a tendency that 2nd moments are larger for the favored functions. → It suggests that the 2nd moments could be used for exotic hadron determination (quark / gluon configuration in hadrons). Global analysis for fragmentation functions of $f_0(980)$

Fragmentation functions for $f_0(980)$

$$z \equiv \frac{E_h}{\sqrt{s/2}} = \frac{2E_h}{Q} = \frac{E_h}{E_q}, \quad s = Q^2$$
$$F^h(z, Q^2) = \frac{1}{\sigma_{tot}} \frac{d\sigma(e^+e^- \to hX)}{dz}$$

 σ_{tot} = total hadronic cross section

Initial functions

$$\begin{split} D_{u}^{f_{0}}(z,Q_{0}^{2}) &= D_{d}^{f_{0}}(z,Q_{0}^{2}) = N_{u}^{f_{0}} z^{\alpha_{u}^{f_{0}}} (1-z)^{\beta_{u}^{f_{0}}} \\ D_{s}^{f_{0}}(z,Q_{0}^{2}) &= N_{s}^{f_{0}} z^{\alpha_{s}^{f_{0}}} (1-z)^{\beta_{s}^{f_{0}}} \\ D_{g}^{f_{0}}(z,Q_{0}^{2}) &= N_{g}^{f_{0}} z^{\alpha_{g}^{f_{0}}} (1-z)^{\beta_{g}^{f_{0}}} \\ D_{c}^{f_{0}}(z,m_{c}^{2}) &= N_{c}^{f_{0}} z^{\alpha_{c}^{f_{0}}} (1-z)^{\beta_{c}^{f_{0}}} \\ D_{b}^{f_{0}}(z,m_{b}^{2}) &= N_{b}^{f_{0}} z^{\alpha_{b}^{f_{0}}} (1-z)^{\beta_{b}^{f_{0}}} \end{split}$$

•
$$D_q^{f_0}(z,Q_0^2) = D_{\overline{q}}^{f_0}(z,Q_0^2)$$

•
$$Q_0 = 1 \text{ GeV}$$

 $m_c = 1.43 \text{ GeV}$
 $m_b = 4.3 \text{ GeV}$

$$N = M \frac{\Gamma(\alpha + \beta + 3)}{\Gamma(\alpha + 2)\Gamma(\beta + 1)}, \quad M \equiv \int_0^1 z D(z) dz$$

Experimental data for f_0

Total number of data: only 23

Exp. collaboration	\sqrt{s} (GeV)	# of data
HRS	29	4
OPAL	91.2	8
DELPHI	91.2	11

pion

Total number of data: 264

Exp. collaboration	\sqrt{s} (GeV)	# of data
TASSO	12,14,22,30,34,44	29
ТСР	29	18
HRS	29	2
TOPAZ	58	4
SLD	91.2	29
SLD [light quark]		29
SLD [c quark]		29
SLD [b quark]		29
ALEPH	91.2	22
OPAL	91.2	22
DELPHI	91.2	17
DELPHI [light quark]		17
DELPHI [b quark]		17

One could foresee the difficulty in getting reliable FFs for f_0 at this stage.

Results on the fragmentation functions

- Functional forms
 - (1) $D_u^{f_0}(z), D_s^{f_0}(z)$ have peaks at large z (2) $z_u^{\max} \sim z_s^{\max}$

(1) and (2) indicate tetraquark structure

$$f_0 \sim \frac{1}{\sqrt{2}} (u\overline{u}s\overline{s} + d\overline{d}s\overline{s})$$

• 2nd moments: $\frac{M_u}{M_s} = 0.43$

This relation indicates $s\overline{s}$ -like structure (or admixture) $f_0 \sim s\overline{s}$

⇒ Why do we get the conflicting results?
 → Uncertainties of the FFs should be taken into account (next page).

Large uncertainties

2nd moments $M_u = 0.0012 \pm 0.0107$ $M_s = 0.0027 \pm 0.0183$ $M_g = 0.0090 \pm 0.0046$ $\rightarrow M_u/M_s = 0.43 \pm 6.73$ The uncertainties are

order-of-magnitude larger than the distributions and their moments themselves.

At this stage, the determined FFs are not accurate enough to discuss internal structure of $f_0(980)$.

 \rightarrow Accurate data are awaited not only for $f_0(980)$

but also for other exotic and "ordinary" hadrons.

Summary II

Exotic hadrons could be found by studying fragmentation functions. As an example, the $f_0(980)$ meson was investigated.

- (1) We proposed to use **2nd moments** and **functional forms** as criteria for finding quark configuration.
- (2) Global analysis of e⁺+e⁻→f₀+X data
 The results may indicate ss or qqqqq structure. However, ...
 - Large uncertainties in the determined FFs
 - \rightarrow The obtained FFs are not accurate enough to discuss the quark configuration of $f_0(980)$.
- (3) Accurate experimental data are important
 → Small-Q² data as well as large-Q² (M_z²) ones
 → c- and b-quark tagging

Requests for experimentalist

- Accurate data on $f_0(980)$ and other exotic hadrons, as well as ordinary ones
- Accurate data especially at small Q²
 e.g. Belle, c.m. energy = 10.58 GeV
 → Determination of scaling violation
 (mainly, gluon fragmentation function)

Our theoretical effort ...

The End

The End