## EXOTIC PARTICLES FROM B-FACTORIES



Youngjoon Kwon (Yonsei Univ.)



EXHIC10 @ YITP, Kyoto, May 20, 2010

### APOLOGIES

• The choice of subjects are limited

- only results from Belle/BaBar
- only for charmonium-like cases (i.e. no  $D_{SJ}$ ...)
- + just a brief mention of a result in bb-like system

Some slides are taken from other people's talks

## OUTLINE

- A brief intro. to B-factory experiments
- The exotic particles
  - X(3872)
  - the family of Y(3940)
  - the charged exotics, a smoking gun?

#### Two asymmetric B-factories

#### **PEP-II at SLAC**



Youngjoon Kwon

New physics search in *B* decays

#### Belle/BaBar Luminosities





- Critical role of the *B*-factories in the verification of the KM hypothesis was recognized and cited by the Nobel Foundation
- A single irreducible phase in the weak int. matrix accounts for most of the *CP* violation observed in the *K*'s and in the *B*'s
- *CP*-violating effects in the B sector are  $\mathcal{O}(1)$  rather than  $\mathcal{O}(10^{-3})$  as in the  $K^0$  system.



A reminder of our plan, agreed with both collaborations, to decide between notation conventions for angles and other quantities:

- use one scheme; share the pain
- we will make a fair coin toss between
  - 1 { $\phi_1$ ,  $\phi_2$ ,  $\phi_3$ , (S, C),  $m_{ES}$ , ... } 2 { $\beta$ ,  $\alpha$ ,  $\gamma$ , (S, A),  $M_{bc}$ , ... }
- I will toss
- Adrian will call "heads" or "tails" for scheme 2
- we will open the box

Drumroll please . . .

 $\mathcal{O} \mathcal{Q} \mathcal{O}$ 

6 / 6

< ⊒ ▶

< ⊒

BFLB 2010/05/18

### Exotic hadrons?

**Conventional** *c* $\overline{c}$ : Reasonably well understood mesons, known for long time. Number of states fixed with masses rather well predicted. Usually first choice for new state

Molecule: Meson and antimeson loosely bound by pion exchange. Mass slightly below sum of mesons masses.

Tetraquark: Colored quarks tightly bound by gluon exchange.

Expect charged states in charmonium mass region

Hybrids: From LQCD m > 4.2 GeV, exotic  $J^{PC}$  possible, large hadronic transitions  $\psi \pi \pi$ ,  $\psi \omega$ 

#### Charmonium spectroscopy



Potential model worked well for charmonia until the era of B-factories



X(3872)

X(3872) in  $B^0 \rightarrow K\pi^+\pi^- J/\psi$ 



 $X(3872) \rightarrow \pi^+\pi^- J/\psi$ 



M(X(3872))=(3871.46±0.37±0.07) MeV by combining two modes together

$$m(X(3872))$$
 ( $\pi^+\pi^- J/\psi$  mode only)

#### $< m_X >= 3871.46 \pm 0.19 \text{ MeV}$





## What is the X(3872) ?

The mass, width and decay modes do *NOT* appear to correspond to those of any predicted charmonium state.

One possibility suggested by a number of authors is a loosely bound S-wave molecule of charm mesons.  $1/\sqrt{2}(D^0 D^{*0}bar + D^0bar D^{*0})$ 

F. Close, P.R. Page, Phys. Lett. B 578, 119 (2003)
N.. A. Tornqvist, Phys Lett. B 590, 209(2004)
E. Braaten, M. Kusunoki, S. Nussinov, Phy. Rev. Lett. 93, 162001 (2004)

Another intriguing idea:  $X(3872) = c \ cbar \ u \ ubar$ state. In such a 4-quark picture there should be two neutral states,  $X^0$ , c cbar u ubar, c cbar d dbar as well as charged states,  $X^+$ , c cbar u dbar, c cbar d ubar etc....

L. Maiani, F. Piccinini, A. D. Polosa, V. Riquer, Phys Rev. D71: 014028 (2005)

 $X(3872) \rightarrow \psi(2S)\gamma$ 

- $X(3872) \rightarrow (c\bar{c})\gamma$  can help distinguish molecule from conventional  $c\bar{c}$
- C = +1 for such decays
- found evidences for decays to both  $J/\psi\gamma$ and  $\psi(2S)\gamma$ ; sig. ~ 3.5 $\sigma$  for each
- obtained the ratio

$$rac{\mathcal{B}(X o \psi(2S)\gamma)}{\mathcal{B}(X o J/\psi\gamma)} = 3.4 \pm 1.4$$

 generally inconsistent with pure DD\* molecule; may imply mixing with a significant cc̄ component



the *Y*(3940) family



# *X*(3940), *Y*(3940), *Z*(3930)



\* X(3940) --> D D\* mostly; Y(3940) -->  $\psi \omega$  dominantly \* X(3940)  $\neq$  Y(3940)

# *X*(3940), *Y*(3940), *Z*(3930)



- \* observed in two-photon process
- \* doesn't seem to be exotic + Belle/BaBar agree
- \* consistent with  $J^{PC} = 2^{++} -> a$  prime candidate for  $\chi_{c2}(2P)$

## yet another in the *Y*(3940) family



## 4 states in the *Y*(3940) family



# Charged exotic -- the Z<sup>+</sup> family a smoking gun?

- Most of the new resonances are "charmonium-like", but does not quite fit the charmonium spectra
- All these new resonances have one thing in common: charge = neutral
- Any charged ones?

# *Z*(4430)+

- Charmonium-like states with non-zero charge will clearly distinguish multi-quark states from charmonia or hybrids
- Search for charged states in

 $B^+ \to K^+ \pi^0 \psi'$  and  $B^+ \to K^0 \pi^+ \psi'$ 





# 430)+ by BaBar



#### *Z*(4430)<sup>+</sup> -- BaBar vs. Belle



Not inconsistent with each other!

## Z(4430)<sup>+</sup> Dalitz analysis (Belle)



# $Z(4430)^+$ Dalitz analysis (Belle)

tions for the fit models with the default set of  $K\pi^+$  resonances 60 and a single  $\pi^+ \psi'$  resonance. K<sup>\*</sup> veto applied Significance Contribution Fit fraction (%) 50 With Z(4430)  $5.7^{+3.1}_{-1.6}$  $Z(4430)^+$  $6.4\sigma$  $4.1^{+3.4}_{-1.1}$  $1.5\sigma$ K  $64.8^{+3.8}_{-3.5}$ 40 *K*<sup>\*</sup>(892) large 6.4σ  $K^{*}(1410)$  $5.5^{+8.8}_{-1.5}$  $0.5\sigma$  $K_0^*(1430)$  $5.3 \pm 2.6$  $1.3\sigma$ 30  $5.5^{+1.6}_{-1.4}$  $K_2^*(1430)$  $3.1\sigma$  $2.8^{+5.8}_{-1.0}$  $K^*(1680)$  $1.2\sigma$ 20 10 •  $M = (4443^{+15}_{-12}) \text{ MeV}/c^2$ without Z

0

́14

16

 $M^{2}(\pi^{+}\psi(2S))$ 

The fit fractions and significances of all contribu-TABLE I.

•  $\Gamma = (107^{+86+74}_{-43-56}) \text{ MeV}$ 

22

 $(GeV^2)$ 

20

18



- Belle studied  $B^0 \to \chi_{c1} \pi^+ K^-$  with  $\chi_{c1} J/\psi \gamma$
- observed clear signals for both  $B^0$  and  $\chi_{c1}$

more  $Z^+$  states:  $Z^+ \to \chi_{c1} \pi^+$ 



- fit to the Dalitz plot strongly prefers two new resonances,  $Z(4050)^+$  and  $Z(4250)^+$ ; data favor two  $Z^+$  against one at  $5.7\sigma$
- spins are not determined  $M(\chi_{c1}\pi^{+}), GeV/c^{2}$

Exotic states in  $B\overline{B}$ ?







FIG. 2: The CM energy-dependent cross sections for  $e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-$  (n = 1, 2, 3) processes normalized to the leadingorder  $e^+e^- \rightarrow \mu^+\mu^-$  cross sections. The results of the fits are shown as smooth curves. The vertical dashed line indicates the energy at which the hadronic cross section is maximal.



#### Many (>10) states poorly consistent with quark model

| State         | M (MeV)                            | Г (MeV)            | JPC             | Decay Modes                                                    | Production Modes                                      |
|---------------|------------------------------------|--------------------|-----------------|----------------------------------------------------------------|-------------------------------------------------------|
| $Y_{s}(2175)$ | 2175 ± 8                           | 58 ± 26            | 1               | $\phi f_0(980)$                                                | $e^+e^-$ (ISR)<br>$J/\psi \rightarrow \eta Y_s(2175)$ |
| X(3872)       | $\textbf{3871.4} \pm \textbf{0.6}$ | < 2.3              | 1++             | $\pi^+\pi^- J/\psi,$<br>$\gamma J/\psi, DD^*$                  | $B \rightarrow KX(3872), p\bar{p}$                    |
| X(3915)       | $3914 \pm 4$                       | $23 \pm 9$         | $0/2^{++}$      | $\omega J/\psi$                                                | $\gamma\gamma \rightarrow X(3915)$                    |
| Z(3930)       | $3929\pm5$                         | $29\pm10$          | 2++             | DD                                                             | $\gamma\gamma \rightarrow Z(3940)$                    |
| X(3940)       | 3942 ± 9                           | $37 \pm 17$        | 0?+             | $D\overline{D^*}$ (not $D\overline{D}$<br>or $\omega J/\psi$ ) | $e^+e^- \rightarrow J/\psi X(3940)$                   |
| Y(3940)       | $3943 \pm 17$                      | $87 \pm 34$        | ??+             | $\omega J/\psi$ (not $D\bar{D^*}$ )                            | $B \rightarrow KY(3940)$                              |
| Y(4008)       | $4008^{+82}_{-49}$                 | $226^{+97}_{-80}$  | 1               | $\pi^+\pi^- J/\psi$                                            | $e^+e^-$ (ISR)                                        |
| X(4160)       | $4156\pm29$                        | $139^{+113}_{-65}$ | 0 <sup>?+</sup> | $D^* \overline{D^*}$ (not $D\overline{D}$ )                    | $e^+e^-  ightarrow J/\psi X(4160)$                    |
| Y(4260)       | $4264 \pm 12$                      | 83 ± 22            | 1               | $\pi^+\pi^- J/\psi$                                            | $e^+e^-$ (ISR)                                        |
| Y(4350)       | $4361 \pm 13$                      | $74 \pm 18$        | 1               | $\pi^+\pi^-\psi'$                                              | $e^+e^-$ (ISR)                                        |
| X(4630)       | $4634^{+9}_{-11}$                  | $92^{+41}_{-32}$   | 1               | $\Lambda_c^+ \Lambda_c^-$                                      | $e^+e^-(ISR)$                                         |
| Y(4660)       | $4664 \pm 12$                      | $48 \pm 15$        | 1               | $\pi^+\pi^-\psi'$                                              | $e^+e^-$ (ISR)                                        |
| Z(4050)       | $4051^{+24}_{-23}$                 | $82^{+51}_{-29}$   | ?               | $\pi^{\pm}\chi_{c1}$                                           | $B \rightarrow KZ^{\pm}(4050)$                        |
| Z(4250)       | $4248^{+185}_{-45}$                | $177^{+320}_{-72}$ | ?               | $\pi^{\pm}\chi_{c1}$                                           | $B \rightarrow KZ^{\pm}(4250)$                        |
| Z(4430)       | 4433 ± 5                           | $45^{+35}_{-18}$   | ?               | $\pi^{\pm}\psi'$                                               | $B \rightarrow KZ^{\pm}(4430)$                        |
| $Y_b(10890)$  | $10,890\pm3$                       | $55\pm9$           | 1               | $\pi^{+}\pi^{-}\Upsilon(1,2,3S)$                               | $e^+e^- \rightarrow Y_b$                              |

observed last 6 years by B-factories

#### Scoreboard

| candidate             | Molecule? | cq cq | cc-gluon |
|-----------------------|-----------|-------|----------|
| X(3872)               | •         | •••   | •••      |
| X(3940)               |           | ??    |          |
| Y(3940)               | · · ·     | ??    | •••      |
| X(4160)               | · · ·     | ??    | ??       |
| Y(4008)               | •         | ??    | •••      |
| Y(4260)               |           | ??    | •••      |
| Y(4350)               |           | ??    | 00       |
| Y(4660)               |           | ??    | 00       |
| Z(4430)               |           | ??    | •••      |
| Z <sub>1</sub> (4050) | •••       | ??    | •••      |
| Z <sub>2</sub> (4250) |           | ??    |          |

table by S. Olsen