3-BODY STRUCTURE OF EXOTICS HADRONS

Alberto Martínez Torres Yukawa institute for theoretical physics ExHIC 2010, kyoto, 20 may 2010

INTRODUCTION

UNTIL RECENTLY, MESON-MESON AND MESON-BARYON STRUCTURE OF MESON AND BARYON RESONANCES HAS BEEN EXPLORED EXTENSIVELY USING CHIRAL DYNAMICS, E.G. :

Some states in the meson & baryon spectrum, however, could very well possess a more complicated molecular structure

¹ J. A. OLLER, E. OSET, NUCL. PHYS. A 620 (1997) 438.
 ² J. A. OLLER, ULF-G. MEISSNER, PHYS. LETT. B 500 (2001) 263-272.
 ³ J. A. OLLER, E. OSET, J. R. PELÁEZ, PHYS. REV. D 59 074001 (199).

⁴ D. JIDO, J. A. OLLER, E. OSET, A. RAMOS, U. G. MEISSNER, NUCL. PHYS. A 725 (2003) 181-200. ⁵ L. ROCA, SOURAV SARKAR, V.K. MAGAS, E. OSET PHYS. REV. C73, 045208 (2006).

N(1710) DECAY MODES

Car -

The following branching fractions are our estimates, not fits or averages.

	Mode	Fraction (Γ_i/Γ)
Γ ₁	Νπ	10-20 %
Γ_2	Nη	(6.2±1.0) %
Гз	Nω	(13.0±2.0) %
Γ4	ΛΚ	5–25 %
Γ ₅	ΣΚ	
Г ₆	$N \pi \pi$	40-90 %
Γ_7	$\Delta \pi$	15-40 %
Г ₈	$arDelta(1232)\pi$, P -wave	
Γg	Nρ	5–25 %
Γ ₁₀	N ho, S=1/2, P-wave	
Γ_{11}	$N\rho$, S=3/2, P-wave	
Γ_{12}	$N(\pi\pi)^{I=0}_{S-wave}$	10-40 %
Γ_{13}	$p\gamma$	0.002-0.05%
Γ_{14}	$p\gamma$, helicity=1/2	0.002-0.05%
Γ_{15}	nγ	0.0-0.02%
Γ ₁₆	$n\gamma$, helicity=1/2	0.0–0.02%

		(PRODUCTION EXPERIMENTS)
	Mode	
Γ1	NK	
Γ2	$\Lambda\pi$	
Γ ₃	$\Sigma \pi$	
Γ4	$\Lambda \pi \pi$	
Γ ₅	Σ(1385) π	
Г ₆	Λ(1405)π	

T/1600) DECAY MODES

N(1710) DECAY MODES

Col.

The following branching fractions are our estimates, not fits or averages.

	Mode	Fraction (Γ_i/Γ)
Γ_1	Νπ	10-20 %
Γ_2	Nη	(6.2±1.0) %
Γ ₃	$N\omega$	(13.0±2.0) %
Γ4	ΛΚ	5–25 %
Γ ₅	ΣΚ	
Γ ₆ <	$N\pi\pi$	40–90 %
Γ ₇	$\Delta\pi$	15-40 %
Г ₈	$arDelta(1232)\pi$, P -wave	
Γg	Nρ	5–25 %
Γ ₁₀	N ho, S=1/2, P-wave	
Γ_{11}	$N\rho$, S=3/2, P-wave	
Γ_{12}	$N(\pi\pi)^{I=0}_{S-wave}$	10-40 %
Γ_{13}	$p\gamma$	0.002-0.05%
Γ_{14}	$p\gamma$, helicity=1/2	0.002-0.05%
Γ_{15}	$n\gamma$	0.0-0.02%
Γ ₁₆	$n\gamma$, helicity=1/2	0.0-0.02%

(PRODUCTION EXPERIMENTS)			
	Mode		
Γ1	NK		
Γ2	$\Lambda\pi$		
Γ3	$\Sigma \pi$		
Γ4	$\Lambda \pi \pi$		
Γ ₅	Σ(1385) π		
Г ₆	$\Lambda(1405)\pi$		

Σ(1620) DECAY MODES

N(1710) DECAY MODES

Col.

The following branching fractions are our estimates, not fits or averages.

Mod	le	Fraction (Γ_i/Γ)
$\Gamma_1 N\pi$		10-20 %
$\Gamma_2 N \eta$		(6.2±1.0) %
Γ ₃ Νω	,	(13.0±2.0) %
Γ ₄ ΛΚ		5–25 %
Γ ₅ Σ k	ſ	
$\Gamma_6 \subset N\pi$	π	40–90 %
Γ ₇ Δ	$\Delta \pi$	15-40 %
Г ₈	$arDelta(1232)\pi$, P-wave	
Г9 /	Vρ	5–25 %
Γ ₁₀	N ho, S=1/2, P-wave	
Γ_{11}	$N\rho$, S=3/2, P-wave	
$\Gamma_{12} = I$	$V(\pi\pi)^{I=0}_{S-wave}$	10-40 %
Γ_{13} $p\gamma$		0.002-0.05%
Γ ₁₄ μ	γ , helicity=1/2	0.002-0.05%
Γ_{15} $n\gamma$		0.0-0.02%
Γ ₁₆ n	γ , helicity=1/2	0.0-0.02%

	(PRODUCTION EXPERIMENTS)		
	Mode		
Γ ₁	NK		
Γ2	$\Lambda\pi$		
Γ3	$\Sigma \pi$		
Γ4	$\Lambda \pi \pi$		
Γ ₅	$\Sigma(1385)\pi$		
Γ ₆	$\Lambda(1405)\pi$		

Σ(1620) DECAY MODES

N(1710) DECAY MODES

C.

The following branching fractions are our estimates, not fits or averages.

Mode	Fraction (Γ_i/Γ)
$\Gamma_1 N\pi$	10-20 %
$\Gamma_2 N \eta$	(6.2±1.0) %
$\Gamma_3 N \omega$	(13.0±2.0) %
$\Gamma_4 \Lambda K$	5-25 %
$\Gamma_5 \Sigma K$	
$\Gamma_6 \qquad N \pi \pi$	40–90 %
$\Gamma_7 \qquad \Delta \pi$	15-40 %
$\Gamma_8 \qquad \Delta(1232)\pi, P-w$	ave
Γ ₉ Νρ	5-25 %
Γ_{10} N ρ , S=1/2, P-	wave
$\Gamma_{11} = N \rho_{} S = 3/2 P_{}$	Nave
$\Gamma_{12} \subset N(\pi\pi)^{I=0}_{S-wave}$	10-40 %
Γ_{13} $p\gamma$	0.002-0.05%
$\Gamma_{14} = p\gamma$, helicity=1/2	0.002-0.05%
Γ_{15} $n\gamma$	0.0-0.02%
Γ_{16} $n\gamma$, helicity=1/2	0.0-0.02%

THE MODEL

WE SOLVE THE FADDEEV EQUATIONS

 $T = T^{1} + T^{2} + T^{3}$ $T^{i} = t^{i} \delta^{3} (\vec{k}_{i}' - \vec{k}_{i}) + T^{ij}_{B} + T^{ik}_{B}$

The T_R^{ij} matrices contain all the possible diagrams where the last two successive interactions are Tⁱ and T^j

$$T_{R}^{13} = k_{2} - \underbrace{ \begin{array}{c} t^{3} \\ k_{3} \end{array}}_{k_{3}} \begin{array}{c} t^{3} \\ t^{1} \\ t^{2} \\ k_{3} \end{array} \begin{array}{c} t^{1} \\ k_{3} \\ t^{1} \\ t^{2} \\ k_{3} \end{array}$$

AND THEY SATISFY THE EQUATIONS:

$$\begin{split} T_R^{12} &= t^1 g^{12} t^2 + t^1 \left[G^{121} T_R^{21} + G^{123} T_R^{23} \right] \\ T_R^{13} &= t^1 g^{13} t^3 + t^1 \left[G^{131} T_R^{31} + G^{132} T_R^{32} \right] \\ T_R^{21} &= t^2 g^{21} t^1 + t^2 \left[G^{212} T_R^{12} + G^{213} T_R^{13} \right] \\ T_R^{23} &= t^2 g^{23} t^3 + t^2 \left[G^{231} T_R^{31} + G^{232} T_R^{32} \right] \\ T_R^{31} &= t^3 g^{31} t^1 + t^3 \left[G^{312} T_R^{12} + G^{313} T_R^{13} \right] \\ T_R^{32} &= t^3 g^{32} t^2 + t^3 \left[G^{321} T_R^{21} + G^{323} T_R^{23} \right] \end{split}$$

CHIRAL AMPLITUDES

7 ON-SHELL PART

OFF-SHELL PART

CHIRAL AMPLITUDES

7 ON-SHELL PART

OFF-SHELL PART

¹⁴ F J. LLANES-ESTRADA, E. OSET AND V. MATEU, PHYS. REV. C 69, 055203 (2004).

¹⁴ F J. LLANES-ESTRADA, E. OSET AND V. MATEU, PHYS. REV. C 69, 055203 (2004).

t' is the two body t-matrix $\hfill t = V + V \tilde{g} t$

g^{IJ} IS THE THREE-BODY GREEN

$$k_{1}$$

$$k_{2}$$

$$k_{3}$$

$$k_{4}$$

$$k_{2}$$

$$k_{3}$$

$$k_{3}$$

$$k_{4}$$

$$k_{3}$$

$$g^{ij}(\vec{k_{i}}',\vec{k_{j}}) = \left(\prod_{r=1}^{D} \frac{N_{r}}{2E_{r}}\right) \frac{1}{\sqrt{s} - E_{i}(\vec{k_{i}}') - E_{l}(\vec{k_{i}}' + \vec{k_{j}}) - E_{j}(\vec{k_{j}})}$$

$$N_{r} = \begin{cases} 1 & \text{meson-meson interaction} \\ 2M_{r} & \text{meson-baryon interaction} \end{cases}$$

G^{IJK} IS THE LOOP FUNCTION FOR DIAGRAMS INVOLVING THREE t MATRICES.

 $\int \frac{d^3 q_1}{(2\pi)^3} t^1(\sqrt{s_{23}}) g^{12} t^2(q_1^2) g^{21} t^1(\sqrt{s_{23}})$ $G^{121} = \int \frac{d^3 q_1}{(2\pi)^3} g^{12} t^2(q_1^2) g^{21}[g^{21}(\vec{k}_2', \vec{k}_1)]^{-1}$

 $G^{121} = \int \frac{d^3 q_1}{(2\pi)^3} g^{12} t^2(q_1^2) g^{21} [g^{21}(\vec{k}_2', \vec{k}_1)]^{-1} [t^2(\sqrt{s_{23}})]^{-1}$ $t^1(\sqrt{s_{23}}) G^{121} t^2(\sqrt{s_{13}}) g^{21}(\vec{k}_2', \vec{k}_1) t^1(\sqrt{s_{23}})$

The $\pi \bar{K}N$ system

We started studying the $\pi \bar{K}N\,$ system:

 $\Lambda(1405) \Rightarrow \bar{K}N, \pi\Sigma, \pi\Lambda, \eta\Sigma, \eta\Lambda, K\Xi'$ $N^*(1535) \Rightarrow \pi N, K\Sigma, K\Lambda, \eta N^*$ $\kappa(700) \Rightarrow \pi \bar{K}, \eta \bar{K}^*$

ALL THE INTERACTIONS ARE IN S-WAVE $\Rightarrow J^{\pi} = 1/2^+$.

THERE ARE SOME S=-1, 1/2⁺ BARYONIC STATES IN THE ENERGY REGION 1500-1800 MeV whose properties, as spin-parity, are not well UNDERSTOOD.

SIGNATURES OF Σ (1660), Λ (1600) have been found in some recent experiments, e.g.,

$$K^- p \to \pi \pi \Sigma$$
 ^{'o} $K^- p \to \pi \pi \Lambda$ ^{''}

⁷ D. JIDO, J. A. OLLER, E. OSET, A. RAMOS, U. G. MEISSNER, NUCL. PHYS. A 725 (2003) 181-200.
 ⁸ T. INOUE, E. OSET, M. J. VICENTE VACAS, PHYS. REV. C 65 035204.
 ⁹ J. A. OLLER, E. OSET, J. R. PELÁEZ, PHYS. REV. D 59 074001 (199).

¹⁰ S. PRAKHOV ET AL. PHYS. REV. C 69, 042202 (2004). ¹¹ S. PRAKHOV ET AL. PHYS. REV. C 70, 034605 (2004).

 π

$$\pi^0\eta\Lambda, \pi^0K^+\Xi^-, \pi^0K^0\Xi^0$$

$$\pi^0\eta\Lambda,\pi^0K^+\Xi^-,\pi^0K^0\Xi^0$$

 $\pi^-\pi^0\Sigma^+, \pi^-\pi^+\Sigma^0, \pi^-\pi^+\Lambda,$

$$\pi^0\eta\Lambda,\pi^0K^+\Xi^-,\pi^0K^0\Xi^0$$

 $\pi^{-}\pi^{0}\Sigma^{+}, \pi^{-}\pi^{+}\Sigma^{0}, \pi^{-}\pi^{+}\Lambda,$

 $\pi^- \eta \Sigma^+, \pi^- K^+ \Xi^0$

 $\pi^{0}\eta\Lambda, \pi^{0}K^{+}\Xi^{-}, \pi^{0}K^{0}\Xi^{0}, \\\pi^{+}\pi^{-}\Sigma^{0}, \pi^{+}\pi^{-}\Lambda, \pi^{+}\eta\Sigma^{-}, \pi^{-}\pi^{0}\Sigma^{+}, \pi^{-}\pi^{+}\Sigma^{0}, \pi^{-}\pi^{+}\Lambda,$

 $\pi^-\eta\Sigma^+, \pi^-K^+\Xi^0$

 $\begin{aligned} \pi^{0}\eta\Lambda, \pi^{0}K^{+}\Xi^{-}, \pi^{0}K^{0}\Xi^{0}, \\ \pi^{+}\pi^{-}\Sigma^{0}, \pi^{+}\pi^{-}\Lambda, \pi^{+}\eta\Sigma^{-}, \ \pi^{-}\pi^{0}\Sigma^{+}, \pi^{-}\pi^{+}\Sigma^{0}, \pi^{-}\pi^{+}\Lambda, \\ \pi^{0}K^{-}p, \pi^{0}\bar{K}^{0}n, \pi^{0}\pi^{0}\Sigma^{0}, \pi^{0}\pi^{+}\Sigma^{-}, \\ \pi^{-}\eta\Sigma^{+}, \pi^{-}K^{+}\Xi^{0}, \\ \pi^{-}\eta\Sigma^{+}, \\ \pi^{-}$

 $\begin{aligned} \pi^{0}\eta\Lambda, \pi^{0}K^{+}\Xi^{-}, \pi^{0}K^{0}\Xi^{0}, \ \pi^{+}K^{-}n, \pi^{+}\pi^{0}\Sigma^{-}, \\ \pi^{+}\pi^{-}\Sigma^{0}, \pi^{+}\pi^{-}\Lambda, \pi^{+}\eta\Sigma^{-}, \ \pi^{-}\pi^{0}\Sigma^{+}, \pi^{-}\pi^{+}\Sigma^{0}, \pi^{-}\pi^{+}\Lambda, \\ \pi^{0}K^{-}p, \pi^{0}\bar{K}^{0}n, \pi^{0}\pi^{0}\Sigma^{0}, \pi^{0}\pi^{+}\Sigma^{-}, \\ \pi^{-}\eta\Sigma^{+}, \pi^{-}K^{+}\Xi^{0}, \\ \pi^{-}\eta\Sigma^{+}, \\ \pi^{-}$

 $\begin{aligned} \pi^{0}\eta\Lambda, \pi^{0}K^{+}\Xi^{-}, \pi^{0}K^{0}\Xi^{0}, \ \pi^{+}K^{-}n, \pi^{+}\pi^{0}\Sigma^{-}, \ \pi^{+}K^{0}\Xi^{-}, \pi^{-}\bar{K}^{0}p, \\ \pi^{+}\pi^{-}\Sigma^{0}, \pi^{+}\pi^{-}\Lambda, \pi^{+}\eta\Sigma^{-}, \ \pi^{-}\pi^{0}\Sigma^{+}, \pi^{-}\pi^{+}\Sigma^{0}, \pi^{-}\pi^{+}\Lambda, \\ \pi^{0}K^{-}p, \pi^{0}\bar{K}^{0}n, \pi^{0}\pi^{0}\Sigma^{0}, \pi^{0}\pi^{+}\Sigma^{-}, & \pi^{-}\eta\Sigma^{+}, \pi^{-}K^{+}\Xi^{0} \end{aligned}$

$\mathbf{Results}\,\pi KN\,\mathbf{sytem}$

 $\Sigma(1620)$ S₁₁ [I(J^P)=1(1/2⁻)] **

$\Sigma(1660) P_{11}[I(J^P)=1(1/2^+)] ***$

1630 - i39/2 MeV1656 - i30/2 MeV

R. Armenteros et al. Nucl. Phys. B 8, 183 (1968).B. R. Martin et al, Nucl. Phys. B 127, 349 (1977).

Results $\pi \bar{K}N$ sytem

 $\Lambda(1810) P_{01}[I(J^P)=O(1/2^+)] ***$ 1750 to 1850 (~ 1810) OUR ESTIMATE

Results $\pi \bar{K}N$ sytem

	Γ(PDG) (MeV)	PEAK POSITION (THIS WORK) (MEV)	Г (this work) (MeV)
	ISOSP	IN = 1	
Σ(1560)	10-100	1590	70
Σ(1620)	10-100	1630	39
Σ(1660)	40-200	1656	30
Σ(1770)	60-100	1790	24
ISOSPIN = O			
Λ (1600)	50-250	1568,1700	60, 136
Λ(1810)	50-250	1740	20

ΤΗΕ ππΝ SYSTEM

• We consider the channels $\pi^0\pi^0n, \pi^+\pi^-n, \pi^-\pi^+n, \pi^0\pi^-p, \pi^-\pi^0p$.

NEGLIGIBLE EFFECT OF THE πKΣ, πKΛ, and π η N channels in the energy region explored.

¹³ K. P. KHEMCHANDANI, A. MARTÍNEZ TORRES, E. OSET, EUR. PHYS. J. A35:295-297,2008.

$N*(1710) P_{11}[I(J^P)=1/2(1/2^+)] ***$

There are other 1/2⁺ states: N*(2100), \triangle (1750), \triangle (1910).

The π N T-MATRIX USED GENERATES THE N*(1535), BUT NO THE N*(1650).

MODEL FOR THE $N^*(1535)$ BELOW THRESHOLD.

EXPERIMENTAL RESULTS ABOVE THRESHOLD.

\pi \pi INTERACTION CALCULATED WITH THE MODEL OF NUCL. PHYS. A 620, 438-456, 1997.

Considering only the $\pi\pi N$ channels $\pi^0\pi^0 n, \pi^+\pi^- n, \pi^-\pi^+ n, \pi^0\pi^- p, \pi^-\pi^0 p$

We add the $\pi \kappa \Sigma$, $\pi \kappa \Lambda$ and $\pi \eta n$ channels $\longrightarrow \Lambda$ (1910).

WE DON'T SEE ANY SIGNAL FOR $\Delta(1750)$.

WE HAVE STUDY THE $a_0(980)N$, $f_0(980)N$ systems by including the coupled channel $K\bar{K}N$ (d. jido and Y.Kanada-en'yo, Phys.Rev. C78,035203 (2008)).

¹⁴ A. MARTÍNEZ TORRES, K. P. KHEMCHANDANI, E. OSET, PHYS.REV.D78, 074031,2008.

Why study the N πK system?

A PEAK IN THE K⁺n invariant mass in the γ n \rightarrow K⁺K⁻n reaction at the Spring8/Osaka pentaguark

CHIRAL LAGRANGIANS: K⁺N INTERACTION IS REPULSIVE.

πKN

SOME INVESTIGATIONS HAVE ALREADY BEEN DONE AND THE RESULTS DO NOT LOOK PROMISING^{15,16}

¹⁵ P. BICUDO, G. M. M. MARQUES, PHYS. REV. D 69 011503 (2004).
 ¹⁶ FELIPE J. LLANES-ESTRADA, E. OSET, V. MATEU, PHYS. REV. C 69 055203 (2004).

THREE-MESON SYSTEMS

 $\frac{\text{BABAR}}{e^+e^- \to \phi f_0(980)}$

THEORETICAL INVESTIGATIONS*

* see a review on different studies (for example) : "New hadron states", Shi-Lin Zhu , Int.J.Mod.Phys.E17:283-322,2008; e-Print: hep-ph/0703225

We have studied the system $\phi K \bar{K}, \, \phi \pi \pi$.

 $T_{pw}^{\phi f_0} [1 + G_{\phi f_0} T_{\phi f_0}]$

¹⁵ A. MARTÍNEZ TORRES, K. P. KHEMCHANDANI, E. OSET, PHYS. REV. D78: 074031,2008

 $T_{pw}^{\phi f_0} [1 + G_{\phi f_0} T_{\phi f_0}]$

¹⁵ A. MARTÍNEZ TORRES, K. P. KHEMCHANDANI, E. OSET, PHYS. REV. D78: 074031,2008

THE Y(4260) RESONANCE

• Observed in the reaction $\,e^+e^-
ightarrow \pi^+\pi^- J/\psi$.

BaBar

CLEO

Enhancement near 1 GeV in the $\pi\pi$ invariant mass.

Analogy with X(2175) :

• We consider $J/\psi\pi\pi, J/\psi K\bar{K}$ as coupled channels.

SUMMARY AND FUTURE PLANS

We have obtained four Σ 's and two Λ 's resonances in the πKN , which correspond to all the 1/2⁺ Σ and Λ states in the energy region 1500-1870.

We observed the N*(1710), N*(2100), Δ (1910) in the $\pi\pi$ N system and coupled channels and a possible N*(1910) with J^P=1/2⁺ in the $K\bar{K}N$ system .

We have studied the three-meson systems, $\phi KK, \ \phi \pi \pi$, where we got the resonance X(2175) .

- A broad bump is obtained in the study of the πKN system around 1700 MeV.
- IN THE $J/\psi KK, J/\psi \pi\pi$ systems we obtain the Y(4260).
- STUDY OF THE SYSTEMS $\omega \pi \pi$, $\rho \pi \pi$, $K^* \pi K$, etc., to get the low-lying vector resonances as w(1420), w(1650), etc.

AND MANY MORE!!