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Introduction
Until recently, meson-meson and meson-baryon structure of 
meson and baryon resonances has been explored extensively 
using chiral dynamics, e.g. :

Some states in the meson & baryon spectrum, however, could 
very well possess a more complicated molecular structure
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Indeed, there are evidences for significant branching ratios 
to three-hadrons for some resonances, e.g.,
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We solve the Faddeev equations

The        matrices contain all the possible diagrams where          
the last two successive interactions are ti and tj 

And they satisfy the equations:
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ti is the two body t-matrix

gij is the three-body green function. 
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ti is the two body t-matrix

gij is the three-body green 
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Gijk  is the loop function for diagrams involving 
three t matrices.
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The        system
We started studying the            system:

All the interactions are in S-wave                      .

There are some S=-1, 1/2+ baryonic states in the energy region 
1500-1800 MeV whose properties, as spin-parity, are not well 
understood.

Signatures of  Σ(1660), Λ(1600) have been found in some 
recent experiments, e.g.,      

πK̄N

π K̄

N

⇒ Jπ = 1/2+

K−p→ ππΛK−p→ ππΣ

N∗(1535)⇒ πN, KΣ, KΛ, ηN

Λ(1405)⇒ K̄N, πΣ, πΛ, ηΣ, ηΛ, KΞ

κ(700)⇒ πK̄, ηK̄

7 D. Jido, J. A. Oller, E. Oset, A. Ramos, U. G. Meissner, Nucl. Phys. A 725 (2003) 181-200.             10 S. Prakhov et al. Phys. ReV. C 69, 042202 (2004).
8 T. Inoue, E. Oset, M. J. Vicente Vacas, Phys. Rev. C 65 035204 .                                                        11 S. Prakhov et al. Phys. Rev. C 70, 034605 (2004).
9 J. A. Oller, E. Oset, J. R. Peláez, Phys. Rev. D 59 074001 (199).
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Results        sytem πK̄N

Σ(1620)  S11 [ I(JP)=1(1/2-) ]   **

Σ(1660)  P11 [ I(JP)=1(1/2+) ]   ***

1656− i30/2 MeV

1630− i39/2 MeV

R. Armenteros et al. Nucl. Phys. B 8, 183 (1968).
B. R. Martin et al, Nucl. Phys. B 127, 349 (1977).



Λ(1810)  P01 [ I(JP)=0(1/2+) ]   ***
1750 to 1850 (~ 1810) OUR ESTIMATE

1740− i24/2 MeV

Results        sytem πK̄N



Γ(PDG)

(MeV)

Peak position 
(this work)

(MeV)

Γ
(this work)

(MeV)

Isospin = 1Isospin = 1Isospin = 1Isospin = 1

Σ(1560) 10-100 1590 70

Σ(1620) 10-100 1630 39

Σ(1660) 40-200 1656 30

Σ(1770) 60-100 1790 24

Isospin = 0Isospin = 0Isospin = 0Isospin = 0

Λ(1600) 50-250 1568,1700 60, 136

Λ(1810) 50-250 1740 20

Results        sytem πK̄N

12  a. martínez torres, k. p. khemchandani, e. oset , Phys. Rev. C77,042203,2008; Eur. Phys. J. A35: 295-297,2008



The π πN system
We consider the channels                                                            .

Negligible effect of the πKΣ, πKΛ, and πηN channels in the 
energy region explored.

π0π0n, π+π−n, π−π+n, π0π−p, π−π0p

1704− i375/2MeV

N*(1710)  P11 [ I(JP)=1/2(1/2+) ]   ***

13 k. p. khemchandani, a. martínez torres, e. oset , Eur. Phys. J. A35:295-297,2008. 
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Figure 9: The same as shown in Fig. 7 but as a function of the ππ invariant mass and that of
the πN system.
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There are other 1/2+ states: N*(2100), Δ(1750), Δ(1910).

The πN t-matrix used generates the N*(1535), but no the N*(1650).

dependence of the three-body diagrams. We proceed with the formulation given in refs. [1, 2, 3, 4]
and solve the Faddeev equations for the ππN system and coupled channels. The present work
benefits from a previous one, ref. [3], where the study of the ππN system and coupled channels, in
which the values of the πN invariant masses were varied up to the region of the N∗(1535), revealed
the dynamical generation of the 1/2+ N∗(1710). However, no clear evidence for the other 1/2+

state, N∗(2100), and 1/2+ ∆ states, ∆(1750), ∆(1910), was found. The model used in Ref. [3] to
calculate the πN t-matrix describes the resonance state N∗(1535) as a dynamically generated one,
but not the N∗(1650). The motivation of this work is to include the N∗(1535) and N∗(1650) in
the input πN t-matrix and look for the three body isospin 1/2 and 3/2 states with JP = 1/2+ in
the ππN system and coupled channels. In order to do this, we use the experimental L = 0 phase
shifts and inelasticities Ref. []for the πN system in isospin 1/2, δ1/2, and 3/2, δ3/2, ( Fig. 1, 2 )
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Figure 1: Experimental phase shifts and inelasticity for the πN interaction in isospin 1/2

and calculate from them the πN amplitudes in the isospin base (Fig. 3 ) using the relation
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4πE
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I
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2iq , ηI the inelasticity, δI the phase shift, M is the nucleon mass, E is the πN
center of mass energy and q is the momentum in the πN center of mass.
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Figure 2: Experimental phase shifts and inelasticity for the πN interaction in isospin 3/2
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Figure 3: Experimental t-matrices for the πN interaction in isospin 1/2 and 3/2.

tπ−p→π−p =
1

3
t3/2 +

2

3
t1/2, tπ−n→π−n = t3/2

tπ+n→π+n = tπ−p→π−p, tπ0p→π0p = tπ0n→π0n

tπ0p→π+n = −tπ0n→π−p

In this way, we can extend the model for the ππN interaction of ref. [3] for energies in which
the invariant masses of the πN can be varied till values around 1700 MeV.
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πN  interaction

ππ interaction calculated with the model of  Nucl. Phys. A 620,    
438-456, 1997.

Considering only the ππN channels                                                              .

model for the N*(1535) below threshold.

experimental results above threshold.
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 1550
 1600

 1650
 1700

 

!s23 (MeV) 1700 1800 1900 2000 2100 2200
 

!s (MeV)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

|T
*
R|

2
 (10

-10
MeV

-6
)

Figure 4: The N∗(2100) in the ππN system with five coupled channels.

2.1 Using only ππN channels

In Fig. 4 the squared T -matrix in isospin I = 1/2 calculated with the coupled channels π0π0n,
π0π−p, π+π−n, π−π+n, π−π0p has been plotted as a function of the total energy in the three-body
system,

√
s, and the invariant mass corresponding to the sub-system composed by the second and

third particle,
√

s23. The sub-system form by the particles 2 and 3, i.e., π and N , has been kept in
isospin I23 = 1/2. The πN t-matrix above threshold has been calculated using Eq. () and below
threshold we have followed Ref. [22]. For the ππ interaction we use ref. [23], where the dynamical
generation of the σ(600), f0(980) and a0(980) resonances was found and the theoretical results for
for physical observables coincide exactly with the experimental ones.

A peak around an energy of 2100 MeV with a width of 140 MeV is observed for a value
√

s23

close to 1670 MeV, which is in the energy region of the N∗(1650). According to the PDG, ref. [24],
there are several experimental groups which have searched this energy region and find a N∗(2100),
whose peak position is observed in 1855 - 2200 MeV and width 69-360 MeV. Our results are
compatibles with these findings.

There is no clear evidence of a resonance in the isospin 3/2 configuration.

6

N*(2100)  P11 [ I(JP)=1/2(1/2+) ]   *



We add the πKΣ, πKΛ and πƞN channels            Δ(1910).

We don’t see any signal for Δ(1750).  

We have study the a0(980)N, f0(980)N systems by including the 
coupled channeL           (D. Jido and Y.Kanada-en’yo, Phys.Rev. C78,035203 (2008)).KK̄N

14  a. martínez torres, k. p. khemchandani, e. oset , Phys.Rev.D78, 074031,2008. 

Δ(1910)  P31 [ I(JP)=3/2(1/2+) ]   ****



Why study the NπK system?

A peak in the K+n invariant mass in the γ n → K+K−n reaction 
at the Spring8/Osaka pentaquark

Chiral Lagrangians: K+N interaction is repulsive.

Some investigations have already been done  and the 
results do not look promising15,16

πKN

15  P. Bicudo, G. M. M. Marques, Phys. REV. D 69 011503 (2004).
16  Felipe J. Llanes-Estrada, E. Oset, V. Mateu, Phys. Rev. C 69 055203 (2004).
                                               



Three-meson systems
BaBar BES

e+e− → φf0(980) J/Ψ→ ηφf0(980)

X(2175)



Theoretical 
Investigations*

*see a review on different studies (for example) :  “New hadron states”,  Shi-Lin Zhu , Int.J.Mod.Phys.E17:283-322,2008; e-Print: hep-ph/0703225 



We have studied the system                  .

We get a peak around 2150 MeV with a width of 27 MeV.

φKK̄, φππ

15  a. martínez torres, k. p. khemchandani, e. oset , Phys. Rev. D78: 074031,2008
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The Y(4260) resonance

BaBar CLEO

maximum, was thus determined to be 8:2 MeV=c2 for
 !2S" and 10:6 MeV=c2 for Y!4260". The data for  !2S"
and Y!4260" enhancements were each fitted with a constant
background plus the peak shape determined by the
Monte Carlo simulation convoluted with the single reso-
nance relativistic Breit-Wigner function which includes the
phase space factor. The mass, width, peak area, and the
background were kept free in the fits. The fit for the  !2S"
peak returned N! !2S"" # 285$ 17 counts and
M! !2S"" # !3685:70$ 0:24" MeV=c2, which compares
favorably with the known mass, M! !2S"" # !3686:093$
0:034" MeV=c2 [10]. The fit for the Y!4260" enhancement
is illustrated in Fig. 3. It results in M!Y!4260"" #
!4284%17

&16" MeV=c2 and !!Y!4260"" # !73%39
&25" MeV=c2.

The number of counts in the fitted resonance is
N!Y!4260"" # 13:6%4:7

&3:9. The fit with a single Breit-
Wigner has !2=d:o:f: # 1:00, a confidence level of 52%,
and a significance of 5:4". The significance level for the
resonance was obtained as " '

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
&2 ln!L0=Lmax"

p
, where

Lmax is the maximum likelihood value for the fit with
resonance, and L0 is the likelihood value for the fit without
resonance.

The systematic errors in our measurements of
M!Y!4260"" and !!Y!4260"" are much smaller than the
statistical errors. An estimate of the systematic error in
our mass measurement for Y!4260" is provided by our

 

FIG. 2 (color online). Event distributions after kinematic fit-
ting for the invariant mass M!#%#&J= ", with J= ! e%e&

and $%$&. Evidence for the production of Y!4260" is present in
both distributions.

 

FIG. 3 (color online). The M!#%#&J= " distribution for the
sum of J= ! e%e& and J= ! $%$&. The dotted line de-
notes the fitted background, and the solid curve denotes the fit
with a single resonance. The semilog plot in the insert illustrates
the  !2S" excitation in the extended mass region.

 

FIG. 1 (color online). Distributions of data events (points) for
M2

miss, as defined in the text. The peaks centered at M2
miss # 0

and bounded by the dashed lines correspond to the missing ISR
photons. The shaded histograms show  !2S" ISR signal
Monte Carlo predictions normalized to the peak counts.

CONFIRMATION OF THE Y!4260" RESONANCE . . . PHYSICAL REVIEW D 74, 091104(R) (2006)
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detected in the EMC since it is produced preferentially
along the beam direction.

Candidate !!!"‘!‘" tracks are refitted, constrained
to a common vertex, while the lepton pair is kinemati-
cally constrained to the J= mass. The resulting
!!!"J= mass-resolution function is well described by
a Cauchy distribution [10] with a full width at half maxi-
mum of 4:2 MeV=c2 for the  #2S$ and 5:3 MeV=c2 at
4:3 GeV=c2.

The !!!"J= invariant-mass spectrum for candidates
passing all criteria is shown in Fig. 1 as points with error
bars. Events that have an e!e" ("!"") mass in the J= 
sidebands %2:76; 2:95& or %3:18; 3:25& (%2:93; 3:01& or
%3:18; 3:25&) GeV=c2 but pass all the other selection crite-
ria are represented by the shaded histogram after being
scaled by the ratio of the widths of the J= mass window
and sideband regions. An enhancement near 4:26 GeV=c2

is clearly observed; no other structures are evident at the
masses of the quantum number JPC ' 1"" charmonium
states, i.e., the  #4040$,  #4160$, and  #4415$ [11], or the
X#3872$. The Fig. 1 inset includes the  #2S$ region with a
logarithmic scale for comparison; 11 802( 110  #2S$
events are observed, consistent with the expectation of
12 142( 809  #2S$ events. We search for sources of back-
grounds that contain a true J= and peak in the !!!"J= 
invariant-mass spectrum. The possibility that one or both
pion candidates are misidentified kaons is checked by
reconstructing the K!K"J= and K(!)J= final states;
we observe featureless mass spectra. Similar studies of ISR
events with a !!!"J= candidate plus one or more addi-
tional pions reveal no structure that could feed down to

produce a peak in the !!!"J= mass spectrum. Two-
photon events are studied directly by reversing the require-
ment on the missing mass; the number of events inferred
for the signal region is a small fraction of those observed
and their mass spectrum shows no structure. Hadronic
e!e" ! q !q events produce J= at a rate that is surpris-
ingly large [12–15], but no structure is observed for this
background.

We evaluate the statistical significance of the enhance-
ment using unbinned maximum likelihood fits to the
!!!"J= mass spectrum. To evaluate the goodness of
fit, the fit probability is determined from the #2 and the
number of degrees of freedom for bin sizes of 5, 10, 20, 40,
and 50 MeV=c2. Bins are combined with higher mass
neighbors as needed to ensure that no bin is predicted to
have fewer than seven entries. We try first-, second-, and
third-order polynomials as null-hypothesis fit functions.
The #2-probability estimates for these fits range from
10"16 to 10"11. No substantial improvement is obtained
by including  #4040$,  #4160$, or  #4415$ [11] terms in
the fit. We conclude that the structure near 4:26 GeV=c2 is
statistically inconsistent with a polynomial background.
Henceforth, we refer to this structure as the Y#4260$.

It is important to test the ISR-production hypothesis
because the JPC ' 1"" assignment for the Y#4260$ fol-
lows from it. The ISR photon is reconstructed in #24( 8$%
of the Y#4260$ events, in agreement with the 25% observed
for ISR #2S$ events. Kinematic distributions for the signal
are obtained by subtracting scaled distributions for events
with !!!"J= mass in the regions %3:86; 4:06& GeV=c2
and %4:46; 4:66& GeV=c2 from those with !!!"J= mass
in the signal region, defined as %4:16; 4:36& GeV=c2. The
distribution of m2

Rec is shown in Fig. 2, along with corre-
sponding distributions for ISR  #2S$ data events and for
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FIG. 2. The distribution of m2
Rec. The points represent the

data events passing all selection criteria except that on m2
Rec

and having a !!!"J= mass near 4260 MeV=c2, minus the
scaled distribution from neighboring !!!"J= mass regions
(see text). The solid histogram represents ISR Y Monte Carlo
events, and the dotted histogram represents the ISR  #2S$ data
events.
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FIG. 1 (color online). The !!!"J= invariant-mass spec-
trum in the range 3:8–5:0 GeV=c2 and (inset) over a wider
range that includes the  #2S$. The points with error bars repre-
sent the selected data and the shaded histogram represents the
scaled data from neighboring e!e" and "!"" mass regions
(see text). The solid curve shows the result of the single-
resonance fit described in the text; the dashed curve represents
the background component.
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Observed in the reaction                                            . e+e− → π+π−J/ψ



Enhancement near 1 GeV in the ππ invariant mass.

Analogy with X(2175) :                                                

ππ

f0(980)  

+ J/ψ Y(4260)

We consider                                     as coupled channels.J/ψππ, J/ψKK̄



systems. We find a resonance in both the systems at
√

s = 4150 MeV with a
full width at half maximum of 90 MeV. The peak appears when the invariant
mass of two pseudoscalars is around that of the f0(980), indicating that the
resonance has a strong coupling to the J/ψf0(980) channel. Both the J/ψππ
and the J/ψKK̄ amplitudes are similar in this energy region, with a differ-
ence in their magnitudes. We find the J/ψKK̄ amplitude to be much larger
in magnitude as compared to that of the J/ψππ system. This reveals the
strong coupling of the three-body resonance to J/ψf0(980), since the f0(980)
couples most strongly to KK̄ [43, 44, 45].

In Fig. 4 we show the J/ψKK̄ squared amplitude as a function of the
total energy of the three body system and the invariant mass of the KK̄
system. We have also studied the invariant mass spectrum of the two pions
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Figure 4: |T ∗
R|2 for the J/ψKK̄ system in total isospin I = 0 as a function

of the total energy,
√

s, and the invariant mass of the KK̄ subsystem,
√

s23.

at
√

s = 4 GeV, 4.3 GeV and 4.5 GeV, i.e., in the energy region of the
resonance and below and above it. To do that we take the three-body |T ∗

R|2-
matrix and multiply it by the phase space factor

p̃ · q̃√
s

(25)

where p̃ =
λ1/2(s,m2

J/ψ
,M2

inv)
√

s is the momentum of the J/ψ in the global center
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Summary and Future plans 

We have obtained four Σ’s and two Λ’s resonances in the            , which correspond 
to all the 1/2+ Σ and Λ states in the energy region 1500-1870.

We observed the N*(1710), N*(2100), Δ(1910) in the ππN system and coupled 
channels and a possible N*(1910) with JP=1/2+ in the            system .

We have studied the three-meson systems,                     , where we got the resonance 
X(2175) . 

A broad bump is obtained in the study of the             system around 1700 MeV.

In the                                  systems we obtain the Y(4260). 

Study of the systems                                          ,  to get the low-lying vector 
resonances as w(1420), w(1650),etc.

πK̄N

φKK̄, φππ

KK̄N

and many more!!

πKN

J/ψKK̄, J/ψππ

ωππ, ρππ, K∗πK, etc.


