QCDSR studíes of exotíc hadrons

M. Nielsen Universidade de São Paulo

YIQPS Workshop on Exotics from Heavy Ion Collisions

Kyoto/Japan 17-30/05/2010

Charmonium spectroscopy before the B-factories

Charmonium spectroscopy after the B-factories

X(3872)	Y(4260)	Z+(4430)
hep-ex/0309032	hep-ex/0506081	arXiv:0708.1790
Y(4360)	Y(4660)	Z ₁ +(4050)
hep-ex/0610057	arXiv:0709.3699	arXiv:0806.4098
Z ₂ +(4250)	Y(4140)	X(4350)
arXiv:0806.4098	arXiv:0903.2229	arXiv:0912.2383

X(3872)	Y(4260)	Z ⁺ (4430)
$B^{\pm} ightarrow K^{\pm}(J/\psi\pi^{+}\pi^{-})$	$e^+e^- \to \gamma_{IRS}(J/\psi\pi^+\pi^-)$	$\bar{B}^0 \to K^-(\psi'\pi^+)$
Y(4360)	Y(4660)	Zı ⁺ (4050)
$e^+e^- \to \gamma_{IRS}(\psi'\pi^+\pi^-)$	$e^+e^- \to \gamma_{IRS}(\psi'\pi^+\pi^-)$	$\bar{B}^0 \to K^-(\chi_{c1}\pi^+)$
Z ⁺ ₂ (4250)	Y(4140)	X(4350)
$\bar{B}^0 \to K^-(\chi_{c1}\pi^+)$	$B^+ \to K^+(\phi J/\psi)$	$\gamma\gamma ightarrow (\phi J/\psi)$

Thursday, May 20, 2010

X(3872)	Y(4260)	Z+(4430)
J ^{PC} =1++	J ^{PC} =1	J ^{PC} =?
3871.4±0.6	4252±7	4433±14
Г<2.3 MeV	Γ=88±24	Γ=44±17
Y(4360)	Y(4660)	Z ₁ +(4050)
J ^{PC} =1	J ^{PC} =1	J ^{PC} =?
4361±13	4664±12	4051±14
Γ=74±18	Γ=48±15	Γ=82±21
Z ₂ +(4250)	Y(4140)	X(4350)
J ^{PC} =?	J ^{PC} =? ⁺	J ^{PC} =? ⁺
4248±44	4143±3	4350±5
Γ=177±54	Γ=11.7±8	Γ=13±9

Common features

- All these states decay into J/ ψ or $\psi(2S) \rightarrow$ they have a $c\bar{c}$ pair in their quark components
- Their masses are not compatible with quark model calculations for charmonium states
- Absence of open charm production in their decays is inconsistent with $c\bar{c}$ interpretation
- Candidates for exotic (not quark-antiquark) states

masses and widths of the Y states are not consistent with any of the 1⁻⁻ charmonium states

X(3872) DD* molecular state tetraquark state mixed charmonium- molecular state threshold effect	$\begin{array}{l} Y(4260) \\ \text{charmonium hybrid} \\ J/\psi - f_0 \text{ bound state} \\ \text{tetraquark state} \\ D_0 D^* \text{ molecular state} \\ S \text{ wave threshold effect} \end{array}$	Z ⁺ (4430) D ₁ D [*] molecular state baryonium state tetraquark state threshold effect
Y(4360) charmonium hybrid	Y(4660) charmonium hybrid ψ' -f ₀ bound state tetraquark state	Z1 ⁺ (4050) D*D* molecular state hadro-charmonium not a resonance
$Z_2^+(4250)$ D ₁ D molecular state	Y(4140) D _s *D _s * molecular state tetraquark state not a resonance	X(4350) D _s *D _{s0} * molecular state tetraquark state P-wave charmonium mixed charmonium- -molecular state

X(3872)

 $\frac{X \to J/\psi \pi^+ \pi^- \pi^0}{X \to J/\psi \pi^+ \pi^-} \sim 1 \quad \implies \text{ strong isospin and G}$ parity violation

FIG. 3: $M_{\rm bc}$ distributions for $B^- \to K^- \pi^+ \pi^- \pi^0 J/\psi$ candidates in the ΔE and $X \to \pi^+ \pi^- \pi^0 J/\psi$ signal regions for 25 MeV-wide $\pi^+ \pi^- \pi^0$ invariant mass bins.

$M(D^{*0}\bar{D}^0) = (3871 \pm 1)$

X(3872): molecular $(D^{*0}\overline{D}^0 + \overline{D}^{*0}D^0)$ state (Swanson, Close, Voloshin, Wong ...) Tornqwist (ZPC61(94)) predict a $\overline{D}D^*$ molecule with $J^{PC} = 0^{-+}$ or 1^{++}

Maiani et al. (PRD71 (05)) tetraquark $J^{PC} = 1^{++}$ state

$M(D^{*0}\bar{D}^0) = (3871 \pm 1)$

X(3872): molecular $(D^{*0}\overline{D}^0 + \overline{D}^{*0}D^0)$ state (Swanson, Close, Voloshin, Wong ...) Tornqwist (ZPC61(94)) predict a $\overline{D}D^*$ molecule with $J^{PC} = 0^{-+}$ or 1^{++}

Maiani et al. (PRD71 (05)) tetraquark $J^{PC} = 1^{++}$ state

diquark-diantiquark

molecular and tetraquark interpretations differ by the way quarks are organized in the state

 $D^{0} - \overline{D^{*0}}$ "molecule" production rate for a pure molecule should be two orders of magnitude smaller than exp. (Bignamini et. al., PRL103(09)162001) Tetraquark states: $X_q = [cq]_{S=1}[\bar{c}\bar{q}]_{S=0} + [cq]_{S=0}[\bar{c}\bar{q}]_{S=1}$

From
$$rac{X o J/\psi \pi^+ \pi^- \pi^0}{X o J/\psi \pi^+ \pi^-} \sim 1 \ \Rightarrow \ \theta \sim \ 20^0$$

Only one is produced in $B^\pm o K^\pm X \Rightarrow$ the other appear in $B^0 o K^0 X$

BaBar Collaboration PRD77, 111101 (2008)

QCD Sum Rule

Fundamental Assumption: Principle of Duality

$$\Pi(q)=i\int d^4x\;e^{iq.x}\;\langle 0|T[j(x)j^\dagger(0)]|0
angle$$

Theoretical side Phenomenological side

QCD Sum Rule

Fundamental Assumption: Principle of Duality

$$\Pi(q) = i \int d^4x \ e^{iq.x} \ \langle 0|T[j(x)j^{\dagger}(0)]|0\rangle$$
Theoretical side Phenomenological side
Theoretical side

$$\Pi(q) = i \int d^4x \, e^{iq \cdot x} \langle 0|T[j(x)j^{\dagger}(0)|0\rangle = \sum_n C_n(Q^2)\hat{O}_n$$

Phenomenological side

$$\Pi(q^2) = -\int ds \, \frac{\rho(s)}{q^2 - s + i\epsilon} \, + \, \cdots$$

$$\rho(s) = \lambda^2 \delta(s - m^2) + \rho_{cont}(s)$$

$$\langle 0|j|H\rangle = \lambda \qquad \rho_{cont}(s) = \rho^{OPE}(s)\Theta(s - s_0)$$

$$s_0: \text{ continuum parameter}$$

$$\Pi^{phen}(Q^2) \leftrightarrow \Pi^{OPE}(Q^2) \qquad \longrightarrow \qquad \text{Borel transform}$$

$$\lambda^2 e^{-m^2/M^2} = \int_{s_{min}}^{s_0} ds \ e^{-s/M^2} \ \rho^{OPE}(s)$$

$$\rho(s) = \lambda^2 \delta(s - m^2) + \rho_{cont}(s)$$

$$\langle 0|j|H \rangle = \lambda \qquad \rho_{cont}(s) = \rho^{OPE}(s)\Theta(s - s_0)$$

$$s_0: \text{ continuum parameter}$$

$$\Pi^{phen}(Q^2) \leftrightarrow \Pi^{OPE}(Q^2) \implies \text{Borel transform}$$

$$\lambda^2 e^{-m^2/M^2} = \int_{s_{min}}^{s_0} ds \ e^{-s/M^2} \ \rho^{OPE}(s)$$
Good Sum Rule \implies Borel window such that:

- pole contribution > continuum contribution
- good OPE convergence
- good Borel stability

$$m^{2} = \frac{\int_{s_{min}}^{s_{0}} ds \ e^{-s/M^{2}} \ s \ \rho^{OPE}(s)}{\int_{s_{min}}^{s_{0}} ds \ e^{-s/M^{2}} \ \rho^{OPE}(s)}$$

QCD sum rules calculation for X(3872)

Matheus, Narison, MN, Richard: PRD75 (07)

 $j_{\mu} = \frac{\imath \epsilon_{abc} \epsilon_{dec}}{\sqrt{2}} [(q_a^T C \gamma_5 c_b)(\bar{q}_d \gamma_{\mu} C \bar{c}_e^T) + (q_a^T C \gamma_{\mu} c_b)(\bar{q}_d \gamma_5 C \bar{c}_e^T)]$

$$m^{2} = \frac{\int_{s_{min}}^{s_{0}} ds \ e^{-s/M^{2}} \ s \ \rho^{OPE}(s)}{\int_{s_{min}}^{s_{0}} ds \ e^{-s/M^{2}} \ \rho^{OPE}(s)}$$

QCD sum rules calculation for X(3872)

Matheus, Narison, MN, Richard: PRD75 (07)

Thursday, May 20, 2010

 $^{\vee}(2.6 - 3.9)$ MeV (QCD sum rule)

BaBar Collaboration PRD77, 111101 (2008)– $\blacktriangleright\Delta m = (2.7 \pm 1.6)$ MeV

Belle Collaboration: arXiv/0809.1224 $\rightarrow \Delta m = (0.18 \pm 0.89 \pm 0.26)$ MeV

Lee, MN, Wiedner: $D^0 \overline{D}^{*0}$ molecular current (arXiv:0803.1168)

$$j_{\mu}^{(q,mol)}(x) = \frac{1}{\sqrt{2}} \left[\left(\bar{q}_a(x) \gamma_5 c_a(x) \bar{c}_b(x) \gamma_\mu q_b(x) \right) - \left(\bar{q}_a(x) \gamma_\mu c_a(x) \bar{c}_b(x) \gamma_5 q_b(x) \right) \right]$$

 $m_X = (3.87 \pm 0.07) \,\, {
m GeV}$

better agreement with the molecular current

Problem: decay width $X \rightarrow J/\psi\pi\pi$ ~ 50 MeV (Navarra, MN, PLB639 (06)272) arXiv:0810.1073: X(3872) observed in two different channels

$$\left(rac{X
ightarrow \psi(2S)\gamma}{X
ightarrow J/\psi\gamma}
ight)_{exp} = 3.4 \pm 1.4, \quad \left(rac{X
ightarrow \psi(2S)\gamma}{X
ightarrow J/\psi\gamma}
ight)_{mol} \sim 4 imes 10^{-3}$$

indication of a significant mixing of the $c\bar{c}$ and $D_0\bar{D}^{*0}$ molecular components

Matheus, Navarra, MN, Zanetti (arXiv:0907.2683)

$$J^q_\mu(x) = \sin\theta j^{(q,mol)}_\mu(x) + \cos\theta j^{(q,2)}_\mu(x)$$
$$j^{(q,2)}_\mu(x) = \frac{1}{6\sqrt{2}} \langle \bar{q}q \rangle [\bar{c}_a(x)\gamma_\mu\gamma_5 c_a(x)]$$

Sugiyama, Nakamura, Ishii, Nishikawa, Oka (arXiv:0707.2533) mixed 2-quark 4-quark current to study the light scalars

Decay width $X \rightarrow J/\psi V$

$$\Pi_{\mu\nu\alpha}(p,p',q) = \int d^4x d^4y \ e^{ip'.x} \ e^{iq.y} \Pi_{\mu\nu\alpha}(x,y)$$

$$\Pi_{\mu\nu\alpha}(x,y) = \langle 0|T[j^{\psi}_{\mu}(x)j^{V}_{\nu}(y)j^{X^{\dagger}}_{\alpha}(0)]|0\rangle$$

$$\Pi_{\mu\nu\alpha}(x,y) = \frac{\langle \bar{u}u \rangle}{2\sqrt{6}} \cos(\theta) \Pi^{c\bar{c}}_{\mu\nu\alpha}(x,y) + \sin(\theta) \Pi^{mol}_{\mu\nu\alpha}(x,y)$$

Decay width $X \rightarrow J/\psi V$

$$\Pi_{\mu\nu\alpha}(p,p',q) = \int d^4x d^4y \ e^{ip'.x} \ e^{iq.y} \Pi_{\mu\nu\alpha}(x,y)$$

$$\Pi_{\mu\nu\alpha}(x,y) = \langle 0|T[j^{\psi}_{\mu}(x)j^{V}_{\nu}(y)j^{X^{\dagger}}_{\alpha}(0)]|0\rangle$$

$$\Pi_{\mu\nu\alpha}(x,y) = \frac{\langle \bar{u}u \rangle}{2\sqrt{6}} \cos(\theta) \Pi^{c\bar{c}}_{\mu\nu\alpha}(x,y) + \sin(\theta) \Pi^{mol}_{\mu\nu\alpha}(x,y)$$

$$\frac{X \to J/\psi \,\pi^+ \pi^- \pi^0}{X \to J/\psi \pi^+ \pi^-} = 1.0 \pm 0.4 \pm 0.3 \implies j^X_\mu(x) = \cos \alpha J^u_\mu(x) + \sin \alpha J^d_\mu(x)$$

$$\frac{\Gamma(X \to J/\psi \, \pi^+ \pi^- \pi^0)}{\Gamma(X \to J/\psi \, \pi^+ \pi^-)} \simeq 0.15 \left(\frac{\cos \alpha + \sin \alpha}{\cos \alpha - \sin \alpha}\right) \longrightarrow \alpha \sim 20^0$$

Thursday, May 20, 2010

Decay width $X \rightarrow J/\psi \Upsilon$

$$\Pi_{\mu\nu\alpha}(p,p',q) = \int d^4x d^4y \ e^{ip'.x} \ e^{iq.y} \Pi_{\mu\nu\alpha}(x,y)$$

 $\Pi_{\mu\nu\alpha}(x,y) = \langle 0|Tj^{\psi}_{\mu}j^{\gamma}_{\nu}j^{X^{\dagger}}_{\alpha}]|0\rangle \quad j^{X}_{\mu} = \sin\alpha J^{d}_{\mu} + \cos\alpha J^{u}_{\mu}$

$$J^{q}_{\mu}(x) = \sin \theta j^{(q,mol)}_{\mu}(x) + \cos \theta j^{(q,2)}_{\mu}(x)$$
$$j^{(q,2)}_{\mu}(x) = \frac{1}{6\sqrt{2}} \langle \bar{q}q \rangle [\bar{c}_{a}(x)\gamma_{\mu}\gamma_{5}c_{a}(x)]$$

$$j_{\mu}^{(q,mol)}(x) = \frac{1}{\sqrt{2}} \left[\left(\bar{q}_a(x) \gamma_5 c_a(x) \bar{c}_b(x) \gamma_\mu q_b(x) \right) - \left(\bar{q}_a(x) \gamma_\mu c_a(x) \bar{c}_b(x) \gamma_5 q_b(x) \right) \right]$$

$$j^{\gamma}_{\mu} = \frac{2}{3}\bar{u}\gamma_{\mu}u - \frac{1}{3}\bar{d}\gamma_{\mu}d + \frac{2}{3}\bar{c}\gamma_{\mu}c$$

 $\Pi^{(phen)}_{\mu\nu\alpha}(p,p',q) \longrightarrow \langle J/\psi(p')|j^{\gamma}_{\nu}(q)|X(p)\rangle$

 $\langle J/\psi(p')|j_{\nu}^{\gamma}(q)|X(p)\rangle = iM\left(X(p)\to J/\psi(p')\gamma(q)\right)\varepsilon_{\nu}^{*\gamma}(q)$

 $M(X(p) \to \gamma(q)J/\psi(p')) = e \,\varepsilon^{mn\rho\sigma} \,\epsilon^{\alpha}_{X}(p) \,\epsilon^{\mu}_{J_{\psi}}(p') \,\epsilon^{\gamma}_{\rho}(q) \,\frac{q_{\sigma}}{m_{X}^{2}} \left(A \,g_{\mu n}g_{\alpha m} \,pq + B \,g_{\mu n} \,p_{m}q_{\alpha} \,+ C \,g_{\alpha m} \,p_{n}q_{\mu}\right)$

$$A(Q^2) = ae^{-bQ^2}$$

$$A = A(Q^2 = 0) = 23.9 \pm 1.2$$
$$A + B = (A + B)(Q^2 = 0) - 0.9 \pm 0.4$$
$$C = C(Q^2 = 0) = -1.08 \pm 0.01$$

$$\Gamma(X(3872) \to \gamma J/\psi) = \frac{\alpha}{3} \frac{P^{*5}}{m_X^4} \left((A+B)^2 + \frac{m_X^2}{m_{J_\psi}^2} (A+C)^2 \right)$$

$$P^* = (m_X^2 - m_{J_\psi}^2) / (2m_X)$$

$$\frac{\Gamma(X \to J/\psi\gamma)}{\Gamma(X \to J/\psi\pi^+\pi^-)} = 0.31 \pm 0.22, \quad 5^0 \le \theta \le 13^0$$

$$\frac{\Gamma(X \to J/\psi\gamma)}{\Gamma(X \to J/\psi\pi^+\pi^-)}\Big|_{exp} = 0.14 \pm 0.05$$

QCDSR \rightarrow X is a mixed charmonium-molecular state

MN, Navarra & Lee, arXiv:0911.1958

X(3872)	Y(4260)	Z ⁺ (4430)
mixed DD [*] charmonium state J ^{PC} =1 ⁺⁺ (3.77± 0.18) GeV	D₀D [*] molecular state J ^{PC} =1 (4.27± 0.10) GeV	D ₁ D [*] molecular state J ^P =0 ⁻ (4.40± 0.10) GeV
Y(4360)	Y(4660)	Z ₁ +(4050)
not compatible with scalar-vector cq state neither with D _{0s} D [*] s molecular state J ^{PC} =1	scalar-vector cs tetraquark state J ^{PC} =1 (4.65± 0.10) GeV	not compatible with D [*] D [*] molecular state J ^P =0 ⁺ (4.19± 0.18) GeV
Z ₂ +(4250)	Y(4140)	X(4350)
D ₁ D molecular state J ^P =1 ⁻ (4.25± 0.10) GeV	D _s *D _s * molecular state J ^{PC} =0 ⁺⁺ (4.14± 0.09) GeV	$D_s D_{s0}^*$ molecular state $J^{PC}=1^{-+}$ (5.05± 0.19) GeV
40< Γ <60 MeV		

X(3872)	Y(4260)	Z ⁺ (4430)
J ^{PC} =1++	J ^{PC} =1	J ^{PC} =?
3871.4±0.6	4252±7	4433±14
Г<2.3 MeV	Γ=88±24	Γ=44±17
Y(4360)	Y(4660)	Z ₁ +(4050)
J ^{PC} =1	J ^{PC} =1	J ^{PC} =?
4361±13	4664±12	4051±14
Γ=74±18	Γ=48±15	Γ=82±21
Z ₂ +(4250)	Y(4140)	X(4350)
J ^{PC} =?	J ^{PC} =? ⁺	J ^{PC} =? ⁺
4248±44	4143±3	4350±5
Γ=177±54	Γ=11.7±8	Γ=13±9

Lee, Morita, MN, arXiv:0808.3168

Thursday, May 20, 2010

Thursday, May 20, 2010

 $\sum_{R \in I \in I}$

up-dated arXiv:0905.2869 confirmed the observation

arXiv:0912.0111 $\checkmark \psi(2S)\pi^+$ invariant mass distribution

difference

almost same data but different conclusions

$T^+_{cc}([cc][\bar{u}\bar{d}]) J^P = 1^+$

Stable against strong decay if $m < m[DD^*] = 3.875 \text{ GeV}$: $\not\rightarrow DD$ in S wave due to J nor in P wave due to P

 $J^P = 1^+$ light antidiquark: $\epsilon_{abc}[\bar{u}_b\gamma_5 C \bar{d}_c^T]$ heavy diquark: $\epsilon_{aef}[c_e^T C \gamma_\mu c_f]$

$T^+_{cc}([cc][\bar{u}\bar{d}]) J^P = 1^+$

Stable against strong decay if $m < m[DD^*] = 3.875 \text{ GeV}$: $\not\rightarrow DD$ in S wave due to J nor in P wave due to P

 $J^P = 1^+$ heavy diquark: $\epsilon_{abc}[\bar{u}_b\gamma_5 C\bar{d}_c^T]$

QCD sum rule study Navarra, MN, Lee, hep-ph/0703071 $m_{T_{cc}} = (4.0 \pm 0.2)\,{
m GeV}$

 T_{cc} : as easy to form in HIC at LHC as X(3872)Lee, Yasui, Liu, Ko, arXiv:0707.1747

Conclusions

- Lots of charmonia in the last 7 years: a new spectroscopy?
 - Emerging consensus that X(3872) is a mixed charmonium-molecular state.
- Discovery of Y(4260), Y(4360) and Y(4660) represent an overpopulation of the 1⁻⁻ states
 - Absence of open charm production in the Y decay is inconsistent with $c\bar{c}$ interpretation
- Z⁺ states, need confirmation, but only molecule or tetraquark interpretations are possible