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It is a great honour to be invited to speak here at the twentieth the

Workshop on General Relativity and Gravitation in Japan and in a

year which coincides with the 60th birthdays of Takashi Nakamura

and Kei-ichi Maeda. Other’s will want to say more about Takashi

Nakamura, but before starting my talk proper, I would like to say a

few words about my old friend Kei-chi Maeda whom I know much

better, and with whom I have collaborated over the years.



It is a particular pleasure to be here in Kyoto, and to be able to

participate in, among other things, a celebration of the 60th birthday

of my old friend and colleague Kei-ichi Maeda, the more so because,

as he told me at the celebration of my own 60’th birthday 4 years

ago in Cambridge, 60 = 5 × 12 has a special significance in Japan.

Like me, Maeda-san was born when the world was recovering from

what was probably the most destructive conflict in human history and

faced even greater dangers. Sixty years on, things don’t seem quite so

gloomy despite the many challenges the world no faces. This is due

in part to the fact that at the macro-level the people of our planet

increasing see themselves as part of a single global community. To

me Maeda-san’s outstanding scientific career is a brilliant illustration

of that at the micro-level. He has tirelessly travelled the world, and

talked and collaborated at all levels with our own micro-community,

and contributed to its international organisations.



That is how I first met him, during what I think was the first of

his many visits to England. However it was in France where our

most productive collaboration took place. We were both visiting the

Observatoire de Paris-Meudon. Kei-ichi was a post-doc and I was

on sabbatical. I still remember with great fondness the discus ions

about black holes and membranes in the kitchen of the house in Reuil-

Malmaison where I and my family were staying. I at least, felt we were

just uncovering the tip of a vast iceberg, but I little suspected how

vast that iceberg would prove to be. Only too soon (at least for me)

Kei-ichi had to depart for Tokyo



But our work ∗ was not cut short despite the absence of the inter-

net, not least because of his energy and enthusiasm, and his truly

remarkable ability to grasp and remember the essential points of any

discussion and fill in the details later .

∗4) Black Holes and Membranes in Higher Dimensional Theories with Dilaton Fields.
G.W. Gibbons, (Meudon Observ. & Ecole Normale Superieure) , Kei-ichi Maeda,
(Meudon Observ. & Tokyo U.) . UTAP-48-87, LPTENS-87-10, Mar 1987. 55pp.
Published in Nucl.Phys.B298:741,1988.



It is to the subject of black holes, in both four and higher dimensions,

to which Kei-ichi Maeda has contributed so much, that I want to turn

to in this talk. In particular, I want to revisit some very old questions

in the light of recent developments. The basic problem is:

How do we describe and characterise the geometry of horizons, and

what are their general geometrical properties?

By “horizon” I shall mean “apparent horizon” or “ outermost closed

marginally trapped” D − 2 dimensional hypersurface S in a D dimen-

sional asymptotically flat or asymptotically Anti-De-Sitter spacetime

whose energy momentum tensor satisfies the Dominant Energy Con-

dition.



Closed Trapped and Marginally Trapped Surfaces

The area of a closed trapped 2-surface

decreases in both the inward and the out-

ward directions if pushed to the future

along its two lightlike normals
A_1

A_2 < A_1

A_2

A_3
A_3 < A_1



The many exact solutions of supergravity and Kaluza-Klein type the-

ories in diverse dimensions now available satisfy this condition and

provide a copious supply of examples for formulating and testing con-

jectures

In many cases, especially if D ≤ 5 and the cosmological constant

Λ = 0 , powerful solution generating techniques, now often thought

of as T and S dualities, are available because of the high degree of

symmetry of the space of fields, which is not infrequently a symmetric

space



In recent months, Mirjam Cvetic, Chris Pope and I , with some initial

help from a Summer Student,Thiti Sirithanakorn (“We”) have been

availing ourselves of these opportunities.

Note that supergravity solutions are useful in this way even if one is

not interested in supergravity per se.



What is meant by Shape ?

By “shape ” I shall mean intrinsic geometrical properties, such as the

area A which determined by the induced Riemannian metric g. The

extrinsic geometry is determined by its being marginally trapped

I shall also be interested in how the shape is related to dynamical

quantities such as the total energy E ( i.e. ADM or Abbott-Deser

mass), total angular momentum J, or total angular momenta Ji,

i = 1,2, . . . , [D−2
2 ] or electric charge Q or charges Qa.



The Penrose Inequality

The best known and best investigated example of what I have in mind

is variously called the Penrose, Cosmic Censorship, or Isoperimetric

Inequality for Black Holes In four dimensions∗

A ≤ 16πE2 (1)

∗we set Newton’s G = 1



Bekenstein-Hawking Entropy

Physically, since the black hole entropy

S =
1

4
A , (2)

this is the statement that for fixed energy, the Schwarzschild, or the

Kottler solution has the largest possible entropy. However (2) is only

rigourously established for stationary, i.e. time independent black

holes.



All known examples are consistent with this, and in the four-dimensional

time symmetric , or so-called Riemannian case there are rigourous

proofs for asymptotically flat initial data due to Huisken and Ilmanen

and by Bray. In higher dimensions we have work by Barrabes and

Frolov and Gibbons and Holzegel and by Bray. These provide partial

results showing that

A

A−2
≤

(

16πE

(D − 2)AD−2

)
D−2
D−3

(3)

Bray’s results on the Riemannian case are valid up to D = 8, this

seems to be related to the the failure of regularity of minimal surfaces

which also been encountered in Brane theory ∗

∗The Bernstein Conjecture, Minimal Cones, and Critical Dimensions. Gary W,
Kei-ichi Maeda and Umpei Miyamoto Class.Quant.Grav.26:185008,2009. e-Print:
arXiv:0906.0264 [hep-th]



Two other measures of shape

If D = 4, in addition to the area the metric g on S gives rise to two

other important measures of the shape

• The length l(S, g) of the shortest non-trivial closed geodesic

• Birkhoff’s invariant β(S, g)

There is an obvious generalisation of l(S, g) to higher dimensions the

generalisation of β(S, g) is much less so and not unique.



Antipodal Isometries

The horizons of all known isolated black holes in all dimensions admit

an antipodal isometry, that is fixed point free involution I preserving

the metric. E.g. I : (θ, φ) → (π−θ, φ+π) for Kerr-Newman. If D = 4,

and this is assumed, then Pu showed, by passing to S/I ≡ RP2,

l(S, g) ≤
√

πA (4)

Assuming the Cosmic-Censorship Inequality (1) we obtain

l(S, g) ≤ 4πE (5)

which smells like the Thorne’s Hoop Conjecture ( see later)



A new conjecture

I conjecture that if D = 4, then

l(S, g) ≤ 4πE (6)

always holds regardless of whether S, g admits an antipodal isometry

• We have checked it on all examples known to us.



Higher Dimensions

In higher dimensions there is no theorem analogous to Pu’s theorem.

However, if S admits an antipodal isometry I we may bound l(S, g)
above by estimating the distance d(x, Ix) between points x ∈ S and

their antipodes Ix. by a topological argument there must a shortest

geodesic homotopic to the projection of the curve joining x and Ix on

S/I. We have found if D = 5 and even dimensional cases examined

that

l(S, g) ≤ 2π

(

A

AD−2

)
1

D−2
(7)

l(S, g) ≤
(

16πD−2E

(D − 2)AD−2

)
1

D−3
(8)



For odd D ≥ 7 our results are inconclusive.



Birkhoff’s Invariant and Thorne’s Hoop Conjecture

To connect with Thorne’s Hoop conjecture we turn to the Birkhoff

invariant β(S, g) in D = 4 spacetime dimensions. We consider a “foli-

ation”, “sweep out” or “slicing “ of S by S1 leaves f = constant = c

whose length or circumference is l(S, g, f, c) with two point-like leaves.

E.G. f = cos θ , l = r+ sin θ for Kerr-Newman. Let β(S, g, f) be the

maximum circumference for that choice of slicing

β(S, g, f) = max
c

l(S, g, f, c) (9)





Now minimize over all choices of slices (e.g. “over all ways of passing

a hoop or an elastic band over the horizon” ) and define

β(S, g) = min
f

β(S, g, f) = min
f

max
c

l(S, g, f, c) (10)





In 1917∗ Birkhoff used this “Mountain Pass Method” method to prove

that very metric on S2 admits at least one non-trivial closed geodesic

whose length is no greater than β(S, g) , thus

l(S, g) ≤ β(S, g) . (11)

∗G. D. Birkhoff, Dynamical systems with two degrees of freedom Trans. Amer.
Math. Soc. 18 (1917)





Another conjecture

In the spirit, if not perhaps not precisely the letter, of Thorne’s Hoop

conjecture I have recently conjectured that ∗

β(S, g) ≤ 4πE . (12)

This implies the previous inequality

l(S, g) ≤ 4πE . (13)

∗Birkhoff’s invariant and Thorne’s Hoop Conjecture. G.W. Gibbons. e-Print:
arXiv:0903.1580 [gr-qc]



Obtaining an upper bound for β(S, g) merely entails estimating the

maximum circumference of a conveniently chosen foliation. In all

cases we have examined (with or without a negative Λ term) the

conjecture has been verified. These now extend to rotating asymp-

totically flat black ho;es with four distinct charges and rotating ADS

black holes with two charges set equal. Further evidence comes from

collapsing shells.



Collapsing Shells and Convex Bodies

This is a class of examples ∗ in which a shell of null matter collapses

at the speed of light in which the apparent horizon S may be thought

of as a convex body isometrically embedded in Euclidean space E3.

In this case one has

8πMADM ≥
∫

S
HdA , (14)

where H = 1
2(

1
R1

+ 1
R2

) is the mean curvature and R1 and R2 the

principal radii of curvature of S and dA is the area element on S. The

right hand side is called the total mean curvature and it was shown

∗G. W. Gibbons, Collapsing Shells and the Isoperimetric Inequality for Black Holes,
Class. Quant. Grav. 14 (1997) 2905 [arXiv:hep-th/9701049].



by Álvarez Paiva † that in this case that

β(g) ≤ 1

2

∫

S
HdA . (15)

†J .C. Álvarez Paiva, Total mean curvature and closed geodesics. Bull. Belg.
Math. Soc. Simon Stevin 4 (1997) 373–377.



Combining Álvarez Paiva’s (15) with (14) establishes the conjecture

in this case.

• Surprisingly, perhaps my conjecture holds up even if in grossly non-

asymptotically flat situations with a magnetic field. However, as we

see, this also leads to a puzzle.



In fact the proof is close to the ideas of Tod. If n is a unit vector we

define the height function on S ⊂ E3 by

h = n.x , x ∈ S . (16)

Let Sn be the orthogonal projection of the body S onto a plane with

unit normal n and let C(n) = l(∂Sn) be the perimeter of Sn. Then

β(g) ≤ β(h) ≤ C(n) . (17)

Now
∫

S
HdA =

1

2π

∫

S2
C(n)dω , (18)

where dω is the standard volume element on the round two-sphere

S2 of unit radius. Thus averaging (17) over S2 and using (18) gives

(15).



Asymptotically-Melvin black holes

were first constructed using a Harrison transformation in Einstein-

Maxwell theory, by Ernst and in an explicit form by Ernst and Wild .

The metric is

ds24 = F2
{

−
(

1 − 2m

r

)

dt2 +
dr2

1 − 2m
r

+ r2dθ2
}

+
r2 sin2 θ

F2
dφ2 , (19)

with

F = 1 +
B2

4
r2 sin2 θ , (20)

where B is the applied magnetic field. If m = 0 we get the Melvin

solution, whilst if instead B = 0 we get the Schwarzschild solution.

The energy with respect to the Melvin background is given by E = m

and the horizon, which is located at r = 2m.



If γ = m |B|, the horizon metric is

ds2 = 4m2
{

(1 + γ2 sin2 θ)2dθ2 +
sin2 θ

(1 + γ2 sin2 θ)2
dφ2

}

, (21)

Remarkably, these are the same as in the absence of the magnetic
field.

β(g) ≤ max
θ

4π E sin θ

1 + γ2 sin2 θ
(22)

If γ ≤ 1, the circumference C(θ) has a single maximum at the equator
θ = π

2, the maximum value being 4πE
1+γ2 ≤ 4πE. If γ ≥ 1, the horizon is

dumb-bell shaped and has two maxima with γ sin θ = 1, the maximum
value being 2Eπ

γ < 4πE. Thus the conjecture is always satisfied.

The solutions for a black hole immersed in a magnetic field in Einstein-
Maxwell-Dilaton theory have been given by Yazadjiev. The conjecture
continues to hold.



Problems with Thorne’s Hoop conjecture?

This was that ∗ Horizons form when and only when a mass E gets
compacted onto a region whose circumference in EVERY direction is
C ≤ 4πE. The capitalization “EVERY ”was intended to emphasis
the fact that while the collapse of oblate shaped bodies, the circum-
ferences are all roughly equal, in the prolate case, a the collapse of
a long almost cylindrically shaped body whose girth was never the
less small would not necessarily produce a horizon. However the polar
circumference is

Cp = 4E
∫ π

0
(1 + γ2 sin2 θ) dθ = 4πE(1 +

1

2
γ2) ≥ 4πE . (23)

This would seem to contradict Thorne’s “in all directions” formulation
of the Hoop Conjecture.
∗Nonspherical Gravitational Collapse: A Short Review in Magic without Magic ed.
J Klauder (San Francisco: Freeman) (1972)



Isometric Embeddings

One way of visualising two dimensional surfaces is to globally embed

them isometrically into three dimensional Euclidean space E3. If the

Gauss curvature is everywhere positive, then by a theorem of Weyl

and Pogorelov this is always possible and the the embedding is unique.

Thus no ambiguity results from the such “inflexible” embeddings.

Contrary to a statement by Ernst and Wild, the horizon of the Ernst

Wild black hole can be globally isometrically embedded into Euclidean

space even though its Gauss curvature can become negative near the

waist of the “dumb bell”. However despite being prolate, the Gaussian

curvature K of the horizon of Kerr-Newman black hole is

K =
(r+

2 + a2)(r2+ − 3a2 cos2 θ)

(r+
2 + a2 cos2 θ)3

, (24)



K can become negative at the poles θ = 0, π and this precludes a

global isometric embedding into E3 as discovered by Smarr ∗ .

Frolov has pointed out that one may globally embed into four dimen-

sions al Euclidean space E4 , but this is probably not unique. However

a theorem of Pogorelov guarantees a unique isometric embedding into

three dimensional hyperbolic space H3. This may be easily achieved

using the upper half space model for H3 . †

∗L. Smarr, Surface Geometry of Charged Rotating Black Holes, Phys Rev D 7

(1973) 289
†Global embedding of the Kerr black hole event horizon into hyperbolic 3-space.
G.W. Gibbons, C.A.R. Herdeiro and C. Rebelo Phys.Rev.D80:044014,2009. e-
Print: arXiv:0906.2768



Hyper-Hoops

The analogue of a “hoop” is a “ hyper-hoop”, a bag or surface of

one less dimension than the horizon which can be “dragged” over it.

Thus we have a sweep out or foliation by a one parameter family of

D − 3 dimensional surfaces, each of which has an area. In any given

foliation f we set

β(S, g, f) = max
c

AD−3(f
−1(c)) (25)

and define

β(S, g) = min
f

β(S, g, f) (26)

•Such sweep-outs have been used by mathematicians to construct

minimal surfaces via the mountain pass method.



If we consider topologically spherical horizons S ≡ SD−2, then obvious

choices for “hyper-hoops” are Sp×Sq, p+q = D−3. E.G. on a round

sphere

ds2 = dθ2 + sin2 θdΩ2
p + cos2 θdΩ2

q (27)

If q = 0, we let 0 ≤ θ ≤ π. If pq 6= 0 we let 0 ≤ θ ≤ π
2.

• For Myers-Perry-AdS black holes with two unequal angular momenta

J1 6= J2 in D = 5, we can choose p = q = 1 and use the toroidal

hyper-hoops swept out by the U(1) × U(1) rotational sub-group.

• For Tangherlini5 , these hyper-hoops are Clifford Tori.



For Clifford sweep outs we find

β(S, g) ≤ 16π

3
E . (28)

This agrees with some earlier numerical work of Ida and Nakao using

the time symmetric initial value problem ∗ and recent work of Yamada

and Shinkai †

• Ida and Nakao also pointed out that in D ≥ 5 some circumfer-

ences may become extremely long, and so Thorne’s in all directions

conjecture fails.

∗Isoperimetric inequality for higher dimensional black holes. Daisuke Ida, Ken-ichi
Nakao, Phys.Rev.D66:064026,2002. e-Print: gr-qc/0204082

†Black Objects and Hoop Conjecture in Five-dimensional Space-time. Yuta
Yamada, Hisa-aki Shinkai, Class.Quant.Grav.27:045012,2010. e-Print:
arXiv:0907.2570 [gr-qc]



Sweep outs by S1 × SD−4

• If we consider the odd dimensional Kerr-AdS solutions with all

angular momenta equal J1 = J2 = dots = J
[D−1

2 ]
then the high

SU([D − 12]) symmetry allows us to foliate by hyper-hoops with topol-

ogy S1 × SD−4. We find the obvious generalization of the conjecture

for the Birkhoff invariant holds.

• We can also consider just one non-vanishing angular momentum.

This also allows an external magnetic field. If D = 2N +1 is odd, we

find

β(g) ≤ 32π

(2N − 1)
(N − 1)

1
2(N+1)

N
−1

2N
E , (29)



Conclusions

• If D = 4 , there is good evidence and some proofs in special cases

that

β(S, g) ≤ 4πE . (30)

which implies

l(S, g) ≤ 4πE . (31)

which follows if

l(S, g) ≤
√

πA and
√

πA ≤ 4πE . (32)



• If D ≥ 5 and even for all examples tested

l(S, g) ≤ 2π

(

A

AD−2

)
1

D−2
(33)

l(S, g) ≤
(

16πD−2E

(D − 2)AD−2

)
1

D−3
(34)



• If D = 5 sweep outs by 2-tori satisfy

β(S, g) ≤ 16π

3
E . (35)

• If D = 2N + 1 sweep outs by S1 × SD−4 satisfy

β(g) ≤ 32π

(2N − 1)
(N − 1)

1
2(N+1) N−1

2N E , (36)



• These inqualities continue to hold in the presence of external Melvin

type magnetic fields in D = 4 and higher dimensions

• However these examples, and higher dimensional rotating black holes

seem to invalidate the “in all directions” part of Thorne’s conjecture.

• If D = 4, Rapidly rotating horizons may not be globally isomet-

rically embedded in Euclidean space E3 , but they can be globally

isometrically embedded in Hyperbolic space H3


