超新星爆発理論

Shoichi Yamada

Science & Engineering Waseda University

理論懇シンポジウム@基研 2010

- X-rays, gamma-rays
- nucleosynthesis of heavy elements

Challenges in Supernova Research

The supernova theory must address the following issues :

✓ How does the explosion occur and determine the neutron star mass and explosion energy?

✓ How do syntheses of heavy elements proceed?
 — explosive nucleosynthesis, r-process

✓ What is the origin of rotation, magnetic field, and proper motion of neutron stars?

✓ What is the relationship with other high energy objects such as GRBs

— formations of hypernovae and magnetars

Scenario of Core-collapse Supernovae

Challenges in Supernova Research

- The difficulty lies in transforming the gravitational energy to the kinetic energy.
- The core-collapse supernova is a complex combination of microphysics and macrophysics.

The interest of the supernova society is currently directed to 3-dimensional evolutions of post-bounce cores.

The currently viable mechanisms:

- ✓ SASI/convection-assisted v-heating mechanism
 - standing accretion shock instability (SASI)+convection
- ✓ Acoustic mechanism
 - proto-neutron star (PNS) oscillations of g-mode nature
- ✓ Magneto-rotational mechanism
 - magneto-rotational instability (MRI)

Brief History of Supernova Research

Time Line	No Rotation or Slow Rotation		Rapid Rotation and/or	
	1D	2D/3D	Magnetic Fields	
1934	Birth of SN theory Baade & Zwicky '34			
1960s - early 1970s	Dawn of SN modeling Colgate & White '66 Arnett '67			
			First 2D simulations LeBlanc & Wilson '70	
1975	Beginning of			
	Modern Theory		Some early discussions on	
	Noutrino-transing		magneto-rotational scenario	
	Sato '75		Rispovatvi-Kogan et al. '76	
	<u>Sato 75</u>		Meier et al. '76	

Time Line	No Rotation or Slow Rotation		Rapid Rotation and/or	
	1D	2D/3D	Magnetic Fields	
ate 1970s – late 1980s	Prompt Explosion	Recognition of importance of non-sphericity Epstein '78		
	vs Delayed Explosion <u>Hillebrandt '84</u> <u>Wilson '82</u>	Early simulations of convection Livio et al. '81 Smarr et al. '81	Rare 2D simulations Symbalisty '84	
<mark>1987</mark>	SN1987A			
	Confirmation of Modern Theory	Discoveries of mixing in envelope and global non-sphericity		
1990s	Criterion for explosions via neutrino-heating mechanism Burrows & Goshy '93	Beginning of modern multi-D Simulations Herant et al. '94 Burrrows et al. '95	Simulations of rapid rotational collapse Moenchmeyer et al. '91 Yamada & Sato '94	
	More precise treatment of neutrino transport Mezzacappa et al. '93 Yamada et al. '97	Janka et al. '96		

Time Line	No Rotation or Slow Rotation		Rapid Rotation and/or	
	1D	2D/3D	Magnetic Fields	
ate 1990s - early 2000s	State-of-the-art simulations Liebendoerfer et al. '01 Rampp et al. '00 Thompson et al. '03 Sumiyoshi et al. '05	Discovery of SASI Blondin et al. '03 Foglizzo et al. '05 <u>Ohnishi et al. '06</u> Yamasaki et al. '07	Introduction of MRI to SN theory Akiyama & Wheeler '03 Simulations of magnet rotational collapse Yamada & Sawai '04	
latter half of 2000s up to present	Black-hole-forming collapse Sumiyoshi et al. '06 Fischer et al. '09 O'Connor et al. '10	2D simulations with sophisticated neutrino transport Neutrino-heating Mechanism Kitaura et al. '07 Marek et al. '07 Buras et al. '07 Buras et al. '08 Ott et al. '08 Acoustic mechanism Burrows et al. '07 Criterion for neutrino Heating Murphy et al. '09	Rotational and magneta rotational collapses with neutrino transport Walder et al '05 Burrows et al. '07 Magneto-rotational collapse in GR Shibata et al. '06 Kuroda et al. '10 3D magneto-rotational collapse Mikami et al. '08	

Dawn of Supernova Modeling

Colgate & White '66

- v-heating mechanism
 - energy deposited by hand
- criticized by Arnett
 - neutrino transport should be taken into account properly
 - no explosion found if this is accounted

First 2D Simulations

LeBlanc & Wilson '70

 rotational and magnetorotational collapse of 7M_{solar} star

jT=Wj = 0.25% jM=Wj = 0.025%

• a jet-like explosion found for magneto-rotational case

no explosion found for rotation alone

v-trapping: The Herald of Modern Theory

- Sato '75 ✓ Weak neutral currents predicted by W-S theory have profound implications for supernova theory
 - Coherent scattering make a core opaque for neutrinos.
 - Neutronization occurs much more slowly than previously thought.
 - Neutrinos diffuse out of the core.

Prompt Explosion vs Delayed Explosion

Prompt Explosion

Hillebrandt et al. '84

 10^9 10^9

t (sec)

Mayle & Wilson '88

Two groups predicted different explosion modes for the same progenitor with an ONeMg core !

SN1987A

✓ Confirmed modern theory !

- NS is formed.
- Neutrinos are trapped and escape on a diffusion time scale.
- ✓ Revealed non-spherical aspects.
 - Matter is not stratified in the envelope.
 - The envelope is elongated.

Effects of Rotation

æ

3000

False Explosions in 90's

Burrows et al. '95

Herant et al. '94

 2D axisymmetric simulations commonly obtained explosions via v heating mechanism.

- Convection was supposed to be the key.
- Successful explosions were currently attributed to approximate v transports and artificial inner boundaries put for numerical reasons.

stabilities and Supernove Explosions id Resolution: 500 x 100 Grid Size = 2.50E408 x 2.50E408 me Stap Number B5136 Time = 4.08E-01 Ot = 3.37E-06 put file: storrgy

Janka et al. '96

Critical Neutrino Luminosity

- Burrows & Goshy '93 : For a given mass accretion rate, there is a critical neutrino luminosity, above which no steady accretion flow exists.
 - This may indicate the revival of shock wave.
 - Convection and rotation tend to lower the threshold.

Yamasaki & Yamada '04, '06a, '06b

Effects of Rotation on Critical Luminosity

■ Flow Pattern

- Yamasaki & Yamada '05, '06, '07
 - The critical luminosity is reduced by rotation.
 - It is further reduced by v-anisotropy.
 - The shock may be revived at the rotation axis.
 - The critical point is reached in spherical symmetry when the radial acceleration satisfies a certain condition.
 - In the rotational case, the condition is satisfied only on the rotation axis.
- Convection also reduces the critical luminosity.

Radial Velocities

Asymmetric Neutrino Emission

Walder et al. '05 Multi-D multi-group flux-limited diffusion •v-anisotropy of factor ~2 for most rapidly rotating models No electron scattering Up to ~200ms seconds after bounce

Rotation and v-anisotropy may not be sufficient for shock revival.

Unsuccessful 1D Simulations

lwakami et al. '07

Axisymmetric Case

I = 1, m = 0

✓ spherically symmetric accretion flow
 ✓ non-axisymmetric perturbations
 ✓ realistic EOS & v-heating rates

• spherical coordinates:300(r)x15(θ)x30(φ)

computation domain

 $5.0 \times 10^{6} \le r \le 1.0 \times 10^{8},$ $0.0 \le \theta \le \pi, \ 0.0 \le \phi \le 2\pi$

model parameters

$$L_{v} = 6.0 \times 10^{52} \text{ [ergs/s]}$$

 $T_{v_{e}} = 4.5 \text{[MeV]}$
 $dM/dt = 1.0 \text{M} \cdot [s^{1}]$

Non-axisymmetric Case initial = 1, m = ±1

SASI

Criterion for Successful Neutrino Heating

Murphy et al. '08

The critical neutrino luminosity is determined by the following relation:

 τ_{adv} : advection time τ_{q} : heating time

The critical luminosity is lower for 2D than for 1D, but is little affected by the I=1 SASI mode.

3D may be the key?

Nordhaus et al. '10

Direct extension of Murphy's models to 3D

- ✓ The critical luminosity is a decreasing function of dimension. This may warrant a successful explosion for 3D models.
 - Longer average dwell times lead to higher entropies.
- \checkmark 3D models explode earlier than 1D and 2D models.
- ✓ Not only I=1, m=0 mode (sloshing mode) but I=1, m=+-1 modes are also excited to similar amplitudes.

Critical Luminosity

Collapse of ONeMg Cores

Kitaura et al. '06 : The same model as in Hillebrandt et al. '84 and in Mayle & Wilson '88.

- The latest simulation predicts that ONeMg core explodes via neutrino heating mechanism even in spherical symmetry.
 - The explosion occurs rather quickly and there is no time for the instability to occur.
 - This is the only model that explodes in spherical symmetry except for the accretion induced collapse.
- \checkmark The explosion is much weaker than was predicted previously in Mayle & Wilson '88.

SASI-assisted Neutrino Heating Mechanism

Marek and Janka '08

- ✓ 2D axisymmetric simulations
- ✓ ray-by-ray plus approximation
- ✓ Newtonian + phenomenological relativistic corrections
- ✓ Lattimer & Swesty EOS, Wolff EOS
- ✓ Flash approximation for nuclear reactions
- ✓ 11.2Msolar, 15Msolar Models

11.2Msolar Model

15Msolar Model

- ✓ SASI is critically important and leads to a very asymmetric expansion.
- ✓ The explosion energy is very small (~10⁴⁹erg) at the end of computations but is increasing at a considerable rate.
- ✓ g-mode oscillations are not remarkable.

Acoustic Mechanism

2.0

Burrows et al. '06

g-modes in a Proto Neutron Star

Eigen Functions of g-modes 2 $_g_1 - mode(l=1)$ $_{-}g_{2}$ -mode(l=1) ξ^r/R 1 Amplitude convective region 0 $\delta p / \rho$ -10.2 0.8 0.4 0.6 0 1 r/55.6 Km Yoshida et al. '06

proto neutron star model
 g-modes are divided into two classes:
 spherically symmetric
 core g-modes : g_n^c
 saktadeg the cellapsg-simulation of

<u>15Msolar progenitor</u> n:radial node number

1	Mode	$\bar{\omega}$	ν (Hz)	$E(10^{53} \mathrm{erg})$
1	$g_1^{ m s}$	2.92	499	5.70
	g_2^{c}	1.43	245	1.30
	$g_3^{ m s}$	1.03	176	1.97
2	$g_1^{ m s}$	3.15	538	7.51
	g_2^{c}	2.24	383	3.15
	g_3^{s}	1.72	294	7.11
	0	20	40	60
r(km)				

g-mode Excitations by Nonlinear SASI

Forced Oscillations of g-modes by SASI

rturbation

Yoshida et al. '07

> The energy of g-modes induced by SASI is small.

< ~10⁵⁰ erg

The rate of energy transfer from SASI to sound waves via g-modes appears rather small.

g-mode Saturations via Mode-couplings

Weinberg & Quataert '08

✓ Equilibrium between a parent mode and two daughter modes (parametric resonance)

$$E_{1,\text{eq}} = \frac{\gamma_2 \gamma_3}{18\kappa^2 \omega_2 \omega_3} \left[1 + \left(\frac{2\delta\omega}{\gamma_2 + \gamma_3 - \gamma_1}\right)^2 \right]$$

κ: coupling coefficient

 ω : frequencies, γ : excitation or damping rates

— the parent mode : I=1, n=2 core g-mode assumed to be excited at the rate of 10^{50} ~ 10^{51} erg/s

- the daughter modes assumed to be damped by neutrino diffusions in the core

✓ Three mode couplings of the primary with all daughter modes with I=1~10, ω/ω_1 =1/4~3/4 are taken into account.

- couplings between daughters with grand-daughters ignored

(l_2, n_2) : (l_3, n_3)	$ \delta\omega /\omega_1$	γ_2, γ_3	$ \kappa $	$E_{1,\mathrm{eq}}(\mathrm{erg})^a$
(8, 39):(9, 33)	0.5	132, 69	1.2	5.1×10^{48}
(3, 21):(4, 13)	2.5	740, 25	1.3	7.2×10^{48}
(1, 16): $(2, 4)$	16.2	548, 12	0.9	8.0×10^{48}
$(2, 14):(3, 9)^b$	5.7	241, 250	1.8	1.3×10^{49}

Note. $|\delta\omega|/\omega_1$ in 10^{-3} ; γ_2 , γ_3 in Hz; $|\kappa|$ in 10^{-26} erg^{-1/2}. $\dot{E}_1 = 10^{51}$ erg s⁻¹

 The saturation levels are much smaller than found by Burrows et al.

 The daughter modes were not resolved by numerical simulati

Magneto-Rotational Mechanism

✓ Magnetic fields tap the free energy stored in differential rotations.

- gravitational energy \rightarrow rotational energy \rightarrow magnetic energy
- magnetic fields amplified by compression, wrapping and magnetorotational instability (MRI)

- ✓ Jets are commonly produced in the direction of the rotation axis either by the magneto-spring or magneto-centrifugal mechanism.
 - Very strong initial field + rapid rotation induce explosions promptly.
 - MRI will amplify magnetic fields exponentially if they are weak initially.
- ✓ Long term simulations suggest that the explosion may be "engine-driven".
- ✓ Toroidal fields change signs alternately for mis-aligned rotators in 3D.

Problems in Magneto-Rotational Mechanism

- ✓ MRI has not been fully resolved yet.
 - MRI is supposed to be the most efficient agent to amplify magnetic fields.
 - The wave length of the fastest growing mode of the magnetorotational instability (MRI) is too small for realistic initial field strengths: $\frac{1}{M} \circ \frac{20v_A}{3} \circ 10^4 \text{cm} \text{Pro}_{A}^{B_{12}}$
- Relatively strong initial fields (^{****}) have been assumed so far. \checkmark Rapid rotation () is required.

 \checkmark Initial field configurations are little known.

✓ MRI could not be resolved unless the fastest growing mode wavelength is resolved by more than ~ 10 grid points.

Alfven Wave Propagation and Dissipation

Suzuki et al. '07

The shock revives indeed! ※ Alfven wave heating added at 100ms after bounce

- ✓ Rotation is unnecessary if magnetic fields are strong enough.
- ✓ Alfven waves produced at the PNS surface propagate outward and are trapped near the shock. They dissipate by nonlinear wave couplings with other waves which then deposit energy to matter by shock heating.
 - dominant over v heating if the surface magnetic field is of the magnetar scale and the velocity fluctuations are a few tens % of the sound velocity.
- Alfven wave heating occurs not only inside but also outside the stalled shock wave.
 preheating

Various Fates of Massive Stars

 \checkmark Detections of some progenitors, more accurate estimates of SN rate and sophistication of stellar evolution theory give us better guess for the outcome of massive star collapses.

Summary

- The are currently three viable mechanisms: (1) neutrino heating,
 (2) acoustic, (3) magneto-rotational, but the first one is the most favorite in the supernova society. However,
 - Neutrino heating seems to work only for less and to be under-energetic.
 - The acoustic mechanism may work at very la fail and PNS oscillations are not severely su produce under-energetic explosions even if i
 - The magneto-rotational mechanism works or
 - ※ Different mechanisms may operate for different

■ 3D may be the key ingredient.

- The critical luminosity may be smaller.
- 2D models are generically underenergetic ar less massive stars at best. There are still dis
- SASI may be a natural explanation of the obcore-collapse supernova explosion.

Further sophistications of the numerical treatment of neutrino transport, general relativity and magnetic field are needed.