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I. Introduction

1. Fluctuations of the stress energy tensor can backreact onto
the background spacetime. In the theory of stochastic gravity,
this is in the form of a stochastic force on the right hand side
of the Einstein equation.

2. Fluctuations of Hawking radiation (Wu and Ford (1999)):
How big are they?

3. Fluctuations of the quantum field near the horizon: Are they
divergent?

4. Sizable fluctuations might induce instability and invalidate the
semi-classical approximation.

5. Renormalization is needed to obtain finite quantities. Here we
adopt the point-splitting method.

6. There are a lot of simplifications in two dimensions. In
particular, two dimensional spacetimes are all conformal to the
Minkowski spacetime.



II. Black hole vacua and mode functions

In two dimensions, take the black hole metric as

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1
dr2

=

(
1− 2M

r

)(
−dt2 + dx2

)
where

x = r + 2M ln
( r

2M
− 1
)

is the tortoise coordinate.



It is conformal to Minkowski spacetime. Using the null
coordinates, u = t − x and v = t + x , one has

ds2 =

(
1− 2M

r

)
du dv

The mode functions for a massless minimally coupled scalar are just

1√
4�!

e−i!u ;
1√
4�!

e−i!v

This is the Schwarzschild coordinates.



One can also use the Kruskal coordinates,

U = −4Me−u/4M ; V = 4Mev/4M

then the metric becomes

ds2 =
2M

r
e−r/2MdU dV

which is well-defined (like Minkowski) at the horizon, r = 2M.
The mode functions are

1√
4�!

e−i!U ;
1√
4�!

e−i!V



Choosing different mode functions corresponds to choosing
different vacua:
Boulware vacuum,

1√
4�!

e−i!u and
1√
4�!

e−i!v

Hartle-Hawking vacuum,

1√
4�!

e−i!U and
1√
4�!

e−i!V

Unruh vacuum,

1√
4�!

e−i!U and
1√
4�!

e−i!v



III. The renormalized stress tensor

For a massless minimally coupled scalar field �, the stress tensor

T�� = ∇��∇��−
1

2
g��∇��∇��

⟨T��(x)⟩ is divergent. Point-splitting regularization,

⟨T��(x)⟩ = lim
x ′→x ,x ′′→x

1

2

(
g�
�′
g�
�′′

+ g�
�′′
g�
�′

+ g��g
�′�′′

)
∇�′∇�′′G+(x ′, x ′′)

where G+(x ′, x ′′) = ⟨�(x ′)�(x ′′)⟩ is the Wightman function.
Usually one take x ′ = x + � and x ′′ = x − � along a geodesic with �
the geodesic distance. The limit means that �→ 0.



In this two dimensional setting, the renormalized stress tensor was
given by Davies and Fulling (1977)

⟨T��⟩ren = ��� +
1

48�
Rg��

where the state dependent tensor

�uu = − 1

12�

(
C 1/2∂2uC

−1/2
)

�vv = − 1

12�

(
C 1/2∂2vC

−1/2
)

�uv = 0

and the Ricci scalar

R = − 4

C

[
∂u∂vC

C
− (∂uC )(∂vC )

C 2

]



Boulware vacuum �, C = 1− 2M/r .

T �
uu =

1

24�M2

(
3M4

2r4
− M3

r3

)
= T �

vv

T �
uv =

1

24�M2

(
1− 2M

r

)(
−M3

r3

)
T �
tt =

1

24�M3

(
7M4

r4
− 4M3

r3

)
∼ 1

r3
as r →∞

T �
tr = 0

T �
rr =

1

24�M2

(
1− 2M

r

)−2(
−M4

r4

)
∼ 1

r4
as r →∞

In a local frame, T �
t̂ t̂

and T �
r̂ r̂ ∼ (1− 2M/r)−1 as r → 2M.



Hartle-Hawking vacuum �, C = 2Me−r/2M/r ,

T �
uu =

1

24�M2

(
3M4

2r4
− M3

r3
+

1

32

)
= T �

vv

T �
uv =

1

24�M2

(
1− 2M

r

)(
−M3

r3

)
= T �

uv

T �
tt =

1

24�M2

(
7M4

r4
− 4M3

r3
+

1

16

)
∼ �

6

(
1

8�M

)2

as r →∞

T �
tr = 0

T �
rr =

1

24�M2

(
1− 2M

r

)−2(
−M4

r4
+

1

16

)
∼ �

6

(
1

8�M

)2

as r →∞

This corresponds to a thermal gas with temperature T = 1/8�M.



In a local frame, as r → 2M,

T �
t̂ t̂ ∼ − 1

96�M2

T �
r̂ r̂ ∼

1

96�M2

The stress tensor is finite in this near horizon limit.
The Hartle-Hawking vacuum is defined with respect to the Kruskal
coordinates which are well-defined at the horizon.



Unruh vacuum �

T �
uu = T �

uu =
1

24�M2

(
3M4

2r4
− M3

r3
+

1

32

)
T �
uv = T �

uv =
1

24�M2

(
1− 2M

r

)(
−M3

r3

)
T �
vv = T �

vv =
1

24�M2

(
3M4

2r4
− M3

r3

)
T �
tr =

1

24�M2

(
1− 2M

r

)−1(
− 1

32

)
∼ − �

12

(
1

8�M

)2

as r →∞

This represents an out-going flux of Hawking radiation with
temperature T = 1/8�M.



IV. Stress tensor correlators and fluctuations

Define the correlation,

ΔT 2
���′�′(x , x ′) = ⟨T��(x)T�′�′(x ′)⟩ − ⟨T��(x)⟩⟨T�′�′(x ′)⟩

Using point-splitting regularization, one arrives at the expression

ΔT 2
���′�′(x , x ′)

=
[
∇�∇�′G+(x , x ′)

] [
∇�∇�′G+(x , x ′)

]
+
[
∇�∇�′G+(x , x ′)

] [
∇�∇�′G+(x , x ′)

]
−g��

[
∇�∇�′G+(x , x ′)

] [
∇�∇�′G+(x , x ′)

]
+g�′�′

[
∇�∇�′G+(x , x ′)

] [
∇�∇�′

G+(x , x ′)
]

+
1

2
g��g�′�′

[
∇�∇�′G+(x , x ′)

] [
∇�∇�′

G+(x , x ′)
]



In the Schwarzschild coordinates (Boulware vacuum),

G+(x , x ′) = − 1

4�
ln(ΔuΔv)

The nonzero correlators are(
ΔT 2

uuu′u′
)�

=
1

8�2(Δu)4(
ΔT 2

vvv ′v ′
)�

=
1

8�2(Δv)4

They are well-defined when x and x ′ are non-coincident. Here we
consider only non-null separation.



Similarly in the Kruskal coordinates (Hartle-Hawking vacuum),

(
ΔT 2

UUU′U′
)�

=
1

8�2(ΔU)4(
ΔT 2

VVV ′V ′
)�

=
1

8�2(ΔV )4

In the Unruh vacuum,(
ΔT 2

UUU′U′
)�

=
1

8�2(ΔU)4(
ΔT 2

vvv ′v ′
)�

=
1

8�2(Δv)4



To study the fluctuations we have to take the coincident limit
x ′ → x which is divergent.
We again use the point-splitting regularization and we obtain(

ΔT 2
����(x)

)
ren

=

(
������ + ������ − g������

�
� − g������

�
� +

1

2
g��g������

��

)
+

R

48�
(g����� + g����� + g����� + g�����

−2g����� − 2g����� + g��g���
�
�

)
+

(
R

48�

)2

(g��g�� + g��g�� − g��g��)



For the Boulware vacuum, we have

(
ΔT 2

tttt

)�
ren

= 4

(
1

24�M2

)2(41M8

4r8
− 11M7

r7
+

3M6

r6

)
(
ΔT 2

rrrr

)�
ren

= 4

(
1

24�M2

)2(
1− 2M

r

)−4
×(

41M8

4r8
− 11M7

r7
+

3M6

r6

)
As r →∞,

(
ΔT 2

tttt

)�
ren
∼
(
ΔT 2

rrrr

)�
ren
∼ 12

(
1

24�M2

)2(M6

r6

)
Note that in the same limit, T �

tt ∼ 1/r3 and T �
rr ∼ 1/r4.



For the Hartle-Hawking vacuum, we have

(
ΔT 2

tttt

)�
ren

= 4

(
1

24�M2

)2(41M8

4r8
− 11M7

r7
+

3M6

r6

+
3M4

32r4
− M3

16r3
+

1

1024

)
(
ΔT 2

rrrr

)�
ren

=

(
1− 2M

r

)−4 (
ΔT 2

tttt

)�
ren



As r →∞, we have

(
ΔT 2

tttt

)�
ren
∼
(
ΔT 2

rrrr

)�
ren
∼ 1

256

(
1

24�M2

)2

Since in the same limit,

T �
tt ∼ T �

rr ∼
1

16

(
1

24�M2

)
Hence, we have√(

ΔT 2
tttt

)�
ren

T �
tt

∼
√

(ΔT 2
rrrr )�ren

T �
rr

∼ 1



As r → 2M, in a local frame,

(
ΔT 2

t̂ t̂ t̂ t̂

)�
ren
∼
(
ΔT 2

r̂ r̂ r̂ r̂

)�
ren
∼ 1

8

(
1

24�M2

)2

In the same limit,

T �
t̂ t̂ ∼ −

1

4

(
1

24�M2

)
; T �

r̂ r̂ ∼
1

4

(
1

24�M2

)
we have again√√√⎷(ΔT 2

t̂ t̂ t̂ t̂

)�
ren

(T �
t̂ t̂

)2
∼

√(
ΔT 2

r̂ r̂ r̂ r̂

)�
ren

(T �
r̂ r̂ )2

∼
√

2



For the Unruh vacuum,

(
ΔT 2

trtr

)�
ren

= 2

(
1

24�M2

)2(
1− 2M

r

)−2
×(

9M8

2r8
− 6M7

r7
+

2M6

r6
+

3M4

32r4
− M3

16r3
+

1

1024

)
As r →∞,

(
ΔT 2

trtr

)�
ren
∼ 1

512

(
1

24�M2

)2

Hence, we have √√√√⎷(ΔT 2
trtr

)�
ren(

T �
tr

)2 ∼
√

2



V. Discussions

1. The fluctuations of the Hartle-Hawking vacuum, for both the
density and the pressure, are of order 1. The same applies to
the fluctuations near the horizon.

2. Fluctuations of the Hawking flux in the Unruh vacuum are
also of order 1.

3. The results show that fluctuations are sizable and they might
induce passive spacetime metric fluctuation to invalidate the
semi-classical approximation. This is true even for static
spacetimes.

4. Results in two dimensions should only be taken as an
indication. Much more work has to be done in four
dimensions.


