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HD: Higher-Derivative Field Theory >  LW: Lee-Wick Form
| .

:- In String Theory, infinite number of field derivative is accompanied
e.g.) tachyon from open string field theory, p-adic string theory, etc.

:- Quantum mechanical system (Pais-Uhlenbeck, 1950)

:- N-th order HD Lag - N Scalar Fields (ordinary fields + Lee-Wick partners)
- LW-partner is ghost: but safe b/c decays early to ordinary particles
(‘69 Lee-Wick)
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\L v : assume no degeneracy

sign LW Fied 0

Kn = +1,@ +1,@ ....... : alters its sign

Ghosts : Lee-Wick partners
- If mass is larger than the ordinary field,
these decay early into other particles
and may cause NO macroscopic physical problem



Generalized Lee-Wick Formalism
N

String Theory
origin

Equiv. up to

Quantum level

Good to deal
physically

[For details, see I.C. and O. Kwon, PRD 82, 025013 (2010)]



_ : consider only N=2 in this work
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e Background metric:
ds* = —dt* + a(t)*dz’da’,
e Background evolution in Lee-Wick matter:
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V  Ordinary field
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Ghost field
By adjusting conditions at t=0, .
one can make H=0 ; Al
8 G 1 . :
H? =" ”“(2% + angan) =0 = a=0 : Bouncng !
n=1 J
|
adjust

If we restrict further,

= —4rCG Z g2 =0 =2 Symmetric about t=0



Symmetric Bouncing Conditions:

£1(0) | £2(0) | ©1(0) | ¢2(0) a(0) =0 |a(0) | a(0) a(0)
Case 1| =0 | =0 | #0 | #0 | mip]{ =mips| = = > 0 for m% < m3
Case2 || 20 | 20 | =0 | =0 o = oo =0 | = =0
Case 3| #0 | =0 | =0 | #0 Ot =msps | <0 | = > =, <
Cased|| =0 | #40 | 40 | =0 o5 =mipi | >0] = <0




For this “Symmetric Bouncing Universe”,
in order to solve Field Equations numerically
the only necessary Initial Condition is

P1(t=0) or (P2(t=0)



my = 2my = 10"°m,,, ¢1(0) = m,

We shall consider
SYMMETRIC case
about t=0




Asymptotic Background Solutions (1 is dominant

. 2 is important mainly during bouncing

Approximate Field Equations

IrG (1 1 |
H* ~ g (25’3% + m.%;;f)

H ~ —4rG g7
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1+ 3Hp +mipr =0

Approximate Asymptotic Soiutions

cos(mit + o)
pi(t) = e
\/R"T?'I.-lt

2 N sin(2mqt + 2a)
3t 3t




Bouncing Universe

:- 60 e-folding is NOT necessary
i) Horizon Problem: Solved during the contracting phase
ii) Flatness Problem: 2k deviates from 0 during expanding phase,
but it approaches 0 during contracting phase
exactly at the same rate.
:- Remaining Condition: SHOULD produce proper Density Perturbation

[H7] & Hovizan




Scalar Perturbation in N=2 Lee-Wick Model
N

Lee-Wick Bouncing Model
:- perturbation is NON-singular (‘09 Cai, Qui, Brandenberger, Zhang.)
:- Singular in other models such as “Ekpyrotic Bouncing Universe”

Initial Perturbation
:- produced in the contracting phase
:- survives during bouncing, and provides “scale-invariant spectrum”
in the expanding phase
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Scalar Perturbation
y

e Perturbed FRW spacetime (linear scalar perturbations):

ds* = —(1 4 2A)dt* + 2a0; Bdz'dt + a* [(1 — 2¢)8;; + 20,0, E) dx'dz’.

e Matter field equations: V,T%, =0

: : k2 . . - N e
dp,, + 3Hdp,, + ?r}"@n + m2dp, = —2mip, A + ¢, [‘4 + 3 + = ({IEE — {IB)]

Sasaki-Mukhanov Variable Q: gauge invariant quantity ./ — &/ 4 ¢

( n = (j‘*.-ﬂn ﬁ 0,
2 ©On + Hl
. Then,
Spatially flat gauge Field Eq. & Others :

Expressed in Qn & Background Fields

Y = 0 E=0.




Field Equation:

N
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'Qn + BHQH + EQH + ﬂlﬂ,Qn - as Z(_lj " E (E‘Pﬂ‘f?f) (-‘23 = 0.
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: Solved when “Background” is known !!

Comoving Curvature R:
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Power Spectrum:
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Series Expansion about bouncing point

n

rity Condition”,

_ J_

Consider the “Bouncing Point (t=0)
and “Solve Q-equations”.
(rather than considering initial perturbations during contracting phase)

, apply “Regula

ll n

Background evolution of and “@n" are already solved and fixed.

Need to get initial behavior of Qn at t=0.

Need series expansion of Background Fields:
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Series expansion for Qn,

(gn QHO + (]nlf + Q312f2 + %3113 + Q?z-lrl _|‘ ):

Series forms of ¢n, Hand Qn > Q-equation

. . k2 . 876G — d (a*
(-'2?1 + BHQH + EQH + ﬂl‘i(—'grz - . ( ]-)E+1d (Ej‘-j IL'.n"ﬁf) (-23 = 0.
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Then, s is determined
- admits 2 linearly independent solutions (even & odd)
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Even- & Odd-Mode Perturbations

From Q-equation,
- Relation b/w coefficients & parameters are determined

To solve Q-equation numerically
(i) even case
_ mo
(1) q0= —
my
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M9 30myme

(ii) odd case
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¢10- q12 (q11. q13) : free to fix > Shooting Parameter



Numerical Solutions

(|\ aven case
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Numerical Solutions

(1) Dominant : gives Q ~ Constant Oscillation

. (2) Sub-dominant : controls Q ~ 1/t Damed Oscillation

/ - Decay/Growing-Mode - Initial Vacuum
. . 1 rrae
(3) When k-term is comparable to (2) : gives |Q; ~ 7 Damped Oscillation

-~ only appears during intermediate period for large k
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(i) even case (i) odd case

logyo|R| logo|R|
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Divergent whenever :
the background becomes (7 = 3 |
: NOT UNphysical
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Ll For a given “k” ol The value can be adjusted
_ P > constant value 3 by the shooting parameter
: ] at t=0



So, is R completely CONSTANT ??2?
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: still k-term is dominant
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In general, the scalar perturbation consists of linearly independent
Constant- and Decaying-mode

Even- and Odd-mode : also linearly independent

Constant ON) Even
Decaying D 11 Odd : related by a linear combination

Need to extract and study C- & D-mode from E- & O-mode
D-mode: “Growing-mode” during contracting phase (t<0)

(For massless ghost, C- and D-mode were studied by ‘04 Wands, ‘09 Hwang)




Normalization and Vacuum Solution
N

Conformal Transformation:

Introduce New Variables:

e T a |1, . 1, - z
Action: S = / dndz? {5(%-1,’)2 — 5(01'3-’)2 + =

;;r)—[

dt = adn.

v = al), 2 =

(27)

A3k

Field Equation:

r
v+ (ﬁsz — %) v=20

Normalization from Canonical Quantization:

3,!2 v(n: k)ag + v (n; Lr)”_T_IJ oikE

vv
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=1,




At [n| >. the field equation is approximated by

‘ 2 m2a® A o3 M
v"(n) + [kz { ni}]#{méla 't — mgla 7 sin ( ngl;l 4+ 2@1)] v(n) =0,

In the subhorizon limit |k7y| >, the dominant terms in Eq. are

d*v(n)  mia®

kn)*o ~ ().
Atz T g176 K)o ()

The solution i1s given by

where |Ao|* — |A]* =1



Take positive-energy mode in the beginning of perturbation (n < 0)

& A =0,

N mla?}. T
(7 exp — —
2 \,/ 2mlor @ 3
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New Type of
Vacuum Solution:
INITIAL Perturbation
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t<0 To have “Normalized Growing Mode"” at initial moment (t<<),
~Linearly combine “even” and “odd” mode of R
- Remove “constant” mode in R

R(f & 0) s ClReven i C‘QROdd
— ¢ [Re\fen—growing + Reyc/o{lst] + ey |:Rodd—growing + ROd const}

. CIReven—growing 4+ CQRodd—growing

r

= REOIE, :> This should meet the “Normalization Value’

Re ven

Rgrowing "

Rodd



t>0

R(t > 0)

At t > 0, since ROdd_COHSt(t > 0) = R 0dd—const (t < 0)

J

the “constant mode” does NO'T disappear!!

ClReven + 9 Rodd

Survive !!
\

. [ _
1 [Re\aen—decaymg 4 Rewen—const} + 9 |:Rodd—decay1ng 4+ Roc!dconst}

|:C1Reven—decay1ng + CQrR’odd—decaymg} + |:C1Reven—const + CgROdd—CODSt}

decaving COns —~ COISs
Rdecaying | poconst |poconst

Re ven

:=> This should provide
10-° Power-Spectrum
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Tensor Perturbation
y 4

ds? = a2(n) [—dn? + (05 H 7 ) doida?]

A3k — T
o 7) = 3 [ o i ¥ 6 7

Let /1, = ah,. the field equation becomes

"

1y + (k‘Q — %)p;\ = (

When the background settles down to matter-dominated expansion at |n| >,

v 3

~ 2
(1~ gr;

then

y + (k‘Q — 7222)'&)\ ~ ()

This 1s exactly same with the cases of inflation !!!



The asymptotic solution becomes

1 1
/ ~ _an lflt'n _
fia(n) = By(k)e (1 + ?kn) + Ax(k)e (1 ?kn)

sin(kn)

= (A+ D) [c:()s‘(kr;) _

] +i(A—- D) [Hill(\f,-,,}) ~cos( f})]

kn kn

”Power Spectrum?”

64 Gk Hx fix :
Pr=— 5[ o || 2l Damps as |n| increases

Killing A = 0 & Picking ”positive-energy mode” :

pia(n) = B { {cnﬂ(la'r}) — %111; U)] — [Hill(\/.';;) _ cos( r})] }
on

k)

Taking the deep sub-horizon limit, |kn| > 2 = ”Initial Perturbation”

px(n) = Blcos(kn) — i sin(kn)] = Be—ikn




So, the tensor perturbation initially starts as this at n << 0

1ix(n) = Blcos(kn) —i sin(kn)] = Be™ ™"

Then, what about at  >> 0 ???
Odd mode amplitude is reversed - |amplitude|*2 will be different ???

: No.....
Since the perturbation is “oscillatory”,
the reversed amplitude gives the same magnitude...



Conclusions
\ 4

Obtained Transformations among HD, AF, and LW

Investigated N=2 Lee-Wick Bouncing Universe Model
for strictly Symmetric Case

Scalar Perturbation was studied in a different scope
: Even and Odd Modes - analyzed Constant and Decay Modes

Found New Type of Initial Vacuum Solution for scalar perturbation

Tensor Perturbation Damps



