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Motivation and Plan

Problems of spin-two graviton

1 The metric is a classical concept which allows precise mesurement, but
quantum gravity requires a quantum field which requires intrinsic
fuzziness — Geroch.

2 The metric can not describe the gravitational coupling to fermions

(ψ̄γa∂µψ)× eµa .

This tells that the tetrad (4 spin-one fields eµa) is more fundamental
than the metric. So we need a new paradigm for quantum gravity.
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Motivation

1 Is Einstein’s theory the simplest possible generally invariant theory?
Yes?.....No!

2 What is the simpler theory?
Restricted gravity which describes the core dynamics of Einstein’s
theory.

3 How can we obtain such gravity?
Making Abelian projection to Einstein’s theory.

4 How can we describe the graviton in this theory?
By a spin-one Abelian gauge field.

Quantum gravity
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Plan

1 Treat Einstein’s theory as a gauge theory of Lorentz group. Make the
Abelian projection to decompose the connection to the restricted part
and the valence part.

2 Remove the valence part to separate the core dynamics of Einstein’s
theory. Obtain the restricted gravity.

3 Express the restricted gravity by an Abelian gauge theory, and show
that the graviton can be described by a massless spin-one gauge field.

4 Recover Einstein’s theory adding the valence part. Establish the
Abelian dominance in Einstein’s theory.

Example: Restricted QCD
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Abelian Decomposition: SU(2) QCD

A) Abelian decomposition

Let (n̂1, n̂2, n̂3 = n̂) be an orthonormal basis, and select n̂ to be the
Abelian (i.e., the color) direction. Make the Abelian projection

Dµn̂ = ∂µn̂+ g ~Aµ × n̂ = 0. (n̂2 = 1)

~Aµ → Âµ = Aµn̂−
1
g
n̂× ∂µn̂. (Aµ = n̂ · ~Aµ)

With this we have the Abelian (Cho-Faddeev-Niemi or Cho-Duan-Ge)
decomposition

~Aµ = Aµn̂−
1
g
n̂× ∂µn̂+ ~Xµ, (n̂ · ~Xµ = 0).

Y. M. Cho (Seoul National University) Restricted Gravity February 27, 2012 5 / 47



Under the infinitesimal gauge transformation

δ ~Aµ =
1
g
Dµ~α, δn̂ = −~α× n̂,

we have

δÂµ =
1
g
D̂µ~α, δ ~Xµ = −~α× ~Xµ.

1 Âµ has the full SU(2) gauge degrees of freedom, and forms an SU(2)
connection space by itself.

2 ~Xµ transforms covariantly.
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B) Restricted QCD (RCD)

Âµ is essentially Abelian, but has a dual structure

F̂µν = ∂µÂν − ∂νÂµ + gÂµ × Âν = (Fµν +Hµν)n̂,
Fµν = ∂µAν − ∂νAµ,

Hµν = −1
g
n̂ · (∂µn̂× ∂ν n̂) = ∂µCν − ∂νCµ,

Cµ =
1
g
n̂1 · ∂µn̂2.

So F̂µν is described by two Abelian potentials, the “electric” Aµ and
the “magnetic” Cµ.
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Let ~Cµ = −1
g
n̂× ∂µn̂ and find

~Hµν = ∂µ ~Cν − ∂ν ~Cµ + g ~Cµ × ~Cν = Hµν n̂.

Moreover, ~Cµ with n̂ = r̂ describes precisely the Wu-Yang monopole,
where n̂ represents the non-Abelian monopole topology Π2(S2).

Define the restricted QCD by

LRCD = −1
4
F̂ 2
µν .

It has the full non-Abelian gauge invariance and thus inherits all
topological properties of QCD, but is much simpler than QCD.
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C) Abelian dominance

Find

~Fµν = F̂µν + (D̂µ
~Xν − D̂ν

~Xµ) + g ~Xµ × ~Xν ,

LQCD = −1
4
~F 2
µν = −1

4
F̂ 2
µν −

g

2
F̂µν · ( ~Xµ × ~Xν)

−1
4

(D̂µ
~Xν − D̂ν

~Xµ)2 − g2

4
( ~Xµ × ~Xν)2.

So QCD can be viewed as RCD made of Âµ which has the valence
gluons as colored source.

The valence gluons play no role in confinement, because they are the
colored source which have to be confined.
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D) Monopole dominance

The Abelian projection separates the monopole potential gauge
independently.

The one-loop effective action of QCD shows that the monopole
condensation plays the central role in color confinement.

The monopole dominance in the color confinement has been
confirmed by recent KEK lattice calculations based on Abelian
projection.
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Figure: The monopole dominance based on Abelian projection in lattice QCD.
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Vacuum Decomposition

A) Vacuum potential

Impose the vacuum isometry

∀i Dµn̂i = (∂µ + g ~Aµ×) n̂i = 0,
∀i [Dµ, Dν ] n̂i = ~Fµν × n̂i = 0 ⇒ ~Fµν = 0.

Construct the most general vacuum potential

~Aµ → Ω̂µ = C k
µ n̂k = − 1

2g
ε k
ij (n̂i · ∂µn̂j) n̂k.
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With S3 compactification of R3, we have the multiple vacua |n〉
classified by the Hopf invariant Π3(S3) ' Π3(S2) which represents
the knot topology of n̂ = n̂3,

n = − g3

96π2

∫
εαβγεijkC

i
αC

j
βC

k
γd

3x. (α, β, γ = 1, 2, 3)

With Ω̂µ, the restricted potential Âµ admits further decomposition

Âµ = Ω̂µ + ~Bµ, ~Bµ = (Aµ + C̃µ) n̂,

δΩ̂µ =
1
g
D

(0)
µ ~α, δ ~Bµ = −~α× ~Bµ, (D (0)

µ = ∂µ + g Ω̂µ×).

So Ω̂µ (just like Âµ) forms its own SU(2) connection space.
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Figure: The structure of non-Abelian connection space: It has two proper
subspaces made of the restricted potentials Âµ and the vacuum potentials Ω̂µ
which form their own non-Abelian connection spaces.
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B) Vacuum tunneling

The multiple vacua |n〉 are physically (as well as topologically)
inequivalent, but are unstable under the quantum fluctuation. They
are connected by the vacuum tunneling through the instantons.

The vacuum tunneling assures the existence of the θ-vacuum in QCD

|Ω〉 =
∑
n

einθ |n〉.

The SU(2) results directly applies to Einstein’s theory because SU(2)
is the rotation subgroup of Lorentz group.
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Einstein’s Theory: Gauge Theory of Lorentz Group

Einstein’s theory can be viewed as a gauge theory of Lorentz group,
and the local Lorentz invariance assures the general invariance.

In the presence of spinor field one must have the local Lorentz
invariance. This necessitates a gauge theory of Lorentz group, where
the tetrad (not the metric) plays the fundamental role.

Constructing a gauge theory of Lorentz group is a natural way to
rediscover Einstein’s theory.
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Introduce a coordinate basis ∂µ and an orthonormal basis ea

[∂µ, ∂ν ] = 0, [ea, eb] = f c
ab ec,

ea = e µ
a ∂µ, ∂µ = e a

µ ea. (µ, ν; a, b, c = 0, 1, 2, 3)

Let Jab = −Jba be the generators of Lorentz group,

[Jab, Jcd] = ηacJbd − ηbcJad + ηbdJac − ηadJbc
= f mn

ab,cd Jmn,

where ηab = diag (−1, 1, 1, 1) is the Minkowski metric.
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With the 3-dimensional rotation and boost generators Li and Ki we
have

[Li, Lj ] = εijkLk, [Li, Kj ] = εijkKk,

[Ki, Kj ] = −εijkLk.

Notice that

1. The Lorentz group is non-compact, so that the invariant metric is
indefinite.
2. The Lorentz group has the well-known invariant tensor εabcd which
allows the dual transformation.
3. The Lorentz group has rank two, so that it has two commuting
Abelian subgroups.
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Remember that

1. In the gauge formalism of Einstein’s theory the spin connection
ω ab
µ corresponds to the gauge potential Γ ab

µ , and the curvature

tensor R ab
µν corresponds to the field strength F ab

µν .

2. In Einstein’s theory the metric gµν propagates, but in gauge theory
the potential Γ ab

µ propagates.

3. The Einstein-Hilbert action is linear in R ab
µν (R = e µ

a e ν
b R

ab
µν ),

but in gauge theory the Yang-Mills action is quadratic in F ab
µν

(F 2 = F ab
µν F ab

µν ).
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Let pab (pab = −pba) be an adjoint representation of Lorentz group

δab p
cd = −1

2
f cd
ab,mn pmn.

We can denote pab by a sextet p made of two triplets ~m and ~e ,

p =
1
2
pabIab =

(
~m
~e

)
, pab = p · Iab =

1
2
pcdI ab

cd ,

I ab
cd =

(
δ a
c δ

b
d − δ b

c δ
a
d

)
,

where ~m is the magnetic (rotation) part and ~e is the electric (boost)
part of p.
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Lorentz group has two maximal Abelian subgroups, A2 made of L3

and K3 and B2 made of (L1 +K2)/
√

2 and (L2 −K1)/
√

2. In both
cases the magnetic isometry is described by two, not one, commuting
sextet vector fields which are dual to each other.

Let one of the isometry vector be p

Dµp = (∂µ + Γµ×) p = 0.

This automatically assures that p̃ also becomes an isometry,

Dµp̃ = (∂µ + Γµ×) p̃ = 0.
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The isometry is described by two Casimir invariants α and β,

α = p · p = ~m2 − ~e2, β = p · p̃ = 2~m · ~e,

and we can always choose (α, β) to be either (±1, 0) or (0, 0).

The A2 isometry has (±1, 0), so that it can be called the
rotation-boost (or non-lightlike) isometry. But the B2 isometry has
(0, 0), so that it can be called the null (or lightlike) isometry.
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Abelian Decomposition of Einstein’s Theory

A) A2 isometry

Express the A2 isometry by

l = l3 =
(
n̂
0

)
, l̃ = k3 =

(
0
−n̂

)
,

Dµ l = 0, Dµ l̃ = 0,

and find (α, β) = (1, 0). Find the restricted connection Γ̂µ of A2

Γ̂µ = Γµ l− Γ̃µ l̃− l× ∂µl

= Γµ l− Γ̃µ l̃− 1
2

(l× ∂µl− l̃× ∂µl̃),

Γµ = l · Γµ, Γ̃µ = l̃ · Γµ.
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The restricted field strength R̂µν of A2 is given by

R̂µν = ∂µΓ̂ν − ∂νΓ̂µ + Γ̂µ × Γ̂ν
= (Γµν +Hµν) l− (Γ̃µν + H̃µν) l̃,

Γµν = ∂µΓν − ∂νΓµ, Hµν = −l · (∂µl× ∂νl) = ∂µC̃ν − ∂νC̃µ,
Γ̃µν = ∂µΓ̃ν − ∂νΓ̃µ, H̃µν = −l̃ · (∂µl× ∂νl) = 0,

so that we have

R̂ ab
µν = (Γµν +Hµν) lab − Γ̃µν l̃ab.
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With this the full connection of Lorentz group is given by

Γµ = Γ̂µ + Zµ, l · Zµ = l̃ · Zµ = 0,

where Zµ is the valence connection.

The corresponding field strength Rµν (the curvature tensor) is
written as

Rµν = ∂µΓν − ∂νΓµ + Γµ × Γν = R̂µν + Zµν ,

Zµν = D̂µZν − D̂νZµ + Zµ × Zν ,

D̂µ = ∂µ + Γ̂µ × .
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B) B2 isometry

Express the B2 isometry by

j =
eλ√

2
(l1 + k2) =

eλ√
2

(
n̂1

n̂2

)
,

j̃ =
eλ√

2
(l2 − k1) =

eλ√
2

(
n̂2

−n̂1

)
,

Dµj = 0, Dµj̃ = 0,

where λ is an arbitrary function. Find (α, β) = (0, 0).
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Let

k =
e−λ√

2
(l1 − k2), k̃ = −e

−λ
√

2
(l2 + k1),

l = −j× k̃, l̃ = j× k.

With this find the restricted connection Γ̂ of B2

Γ̂µ = Γµ j− Γ̃µ j̃− k× ∂µj

= Γµ j− Γ̃µ j̃− 1
2

(k× ∂µj− k̃× ∂µj̃)

Γµ = k · Γµ, Γ̃µ = k̃ · Γµ.
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The restricted curvature tensor R̂µν of B2 is given by

R̂µν = ∂µΓ̂ν − ∂νΓ̂µ + Γ̂µ × Γ̂ν
= (Γµν +Hµν)j− (Γ̃µν + H̃µν )̃j,

Γµν = ∂µΓν − ∂νΓµ, Γ̃µν = ∂µΓ̃ν − ∂νΓ̃µ,
Hµν = −k · (∂µj× ∂νk− ∂νj× ∂µk) = ∂µHν − ∂νHµ,

H̃µν = −k̃ · (∂µj× ∂νk− ∂νj× ∂µk) = ∂µH̃ν − ∂νH̃µ.

Adding the valence part Zµ to Γ̂µ we obtain the full connection and
the full curvature tensor

Γµ = Γ̂µ + Zµ, k · Zµ = k̃ · Zµ = 0.

Rµν = R̂µν + Zµν , Zµν = D̂µZν − D̂νZµ + Zµ × Zν .

Y. M. Cho (Seoul National University) Restricted Gravity February 27, 2012 28 / 47



Restricted Gravity

Introduce the Lorentz covariant 4-index metric g ab
µν

gµν = g ab
µν · Iab = e a

µ e
b
ν Iab,

g ab
µν = (e a

µ e
b
ν − e a

ν e
b
µ ) = e c

µ e
d
ν I

ab
cd ,

and find

∇αgµν = 0 ⇐⇒ Dµgµν = 0,

where Dµ = ∇µ + Γµ× is the generally and gauge covariant
derivative.

Construct the restricted gravity with Zµ = 0. Use the first order
formalism.
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A) A2 gravity

Impose the A2 isometry and put Zµ = 0. Let

S[e µ
a ,Γµ, Γ̃µ] =

∫
e
{

gµν · R̂µν + λµD̂νgµν
}
d4x

=
∫
e
{
Gµν(Γµν +Hµν)− G̃µνΓ̃µν + λµD̂νgµν

}
d4x,

e = Det (eµa), D̂µ = ∇µ + Γ̂µ×
Gµν = e a

µ e
b
ν lab, G̃µν = e a

µ e
b
ν l̃ab,

Γµν +Hµν = ∂µAν − ∂νAµ, Aµ = Γµ + C̃µ.

Γ̃µν = ∂µBν − ∂νBµ, (Bµ = Γ̃µ).
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Find the Maxwell-type equation of motion of A2 gravity

∇µGµν = 0, ∇µG̃µν = 0,

Gµν(∂νAρ − ∂ρAν)− G̃µν(∂νBρ − ∂ρBν) = 0,

D̂µgµν = 0.

Notice that Gµν admit “gravitational potential” Gµ

Gµν = ∇µGν −∇νGµ = ∂µGν − ∂νGµ.

Compare this with Einstein’s equation

Rµν −
1
2
R gµν = 0.
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B) B2 gravity

Impose the B2 isometry and put Zµ = 0. Let

S[e µ
a ,Γµ, Γ̃µ] =

∫
e
{

gµν · R̂µν + λµD̂νgµν
}
d4x

=
∫
e
{
Jµν(Γµν +Hµν)− J̃µν(Γ̃µν + H̃µν) + λµD̂νgµν

}
d4x,

Jµν = e a
µ e

b
ν jab, J̃µν = e a

µ e
b
ν j̃ab,

Γµν +Hµν = ∂µKν − ∂νKµ, Kµ = Γµ +Hµ,

Γ̃µν + H̃µν = ∂µK̃ν − ∂νK̃µ, K̃µ = Γ̃µ + H̃µ.
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Find the Maxwell-type equation of motion of B2 gravity

∇µJ µν = 0, ∇µJ̃ µν = 0,

Jµν (∂νKρ − ∂ρKν)− J̃µν (∂νK̃ρ − ∂ρK̃ν) = 0,

D̂µgµν = 0,

where Jµν admit “gravitational potential” Jµ

Jµν = ∇µJν −∇νJµ = ∂µJν − ∂νJµ.

Again compare this with Einstein’s equation.
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Notice that

1 Restricted gravity is generally invariant, but simpler than Einstein’s
gravity.

2 It describes a Maxwell-type Abelian (dual) core dynamics of Einstein’s
gravity, with massless spin-one graviton.

3 It inherits all topological properties of Einstein’s gravity.

4 Restricted gravity and Einstein’s gravity have identical vacuum.

Abelian Dominance
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Topology of Vacuum Space-time

How can one obtain the most general vacuum space-time?

Solving ”the vacuum Einstein’s equation”

Rµν −
1
2
R gµν = 0

will not help, because we need the vacuum of quantum gravity (the
flat space-time)

R σ
µνρ = 0.

Impose the vacuum isometry and construct the most general vacuum
connection. Classify the classical vacua using the isometry.
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Let

li =
(
n̂i
0

)
, ki =

(
0
n̂i

)
= −l̃i,

n̂1 × n̂2 = n̂3, (i = 1, 2, 3)

and impose the vacuum isometry (the maximal isometry)

∀i Dµli = 0, ∀i Dµki = 0.

Notice that

Dµli = 0, ⇐⇒ Dµki = 0.
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Let

p =
(

~m
~e

)
, Γµ =

(
~Aµ
~Bµ

)
,

and find in 3-d notation Dµp = 0 is written as

Dµ ~m = ~Bµ × ~e, Dµ~e = − ~Bµ × ~m.

So the vacuum isometry ∀i Dµli = 0 (and ∀i Dµki = 0) is written as

∀i Dµn̂i = ~Bµ × n̂i, Dµn̂i = − ~Bµ × n̂i,

or equivalently

∀i Dµn̂i = 0, ~Bµ = 0 !
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Obtain the most general vacuum connection

Γµ → Ωµ =
(

Ω̂µ

0

)
Ω̂µ = −1

2
εijk(n̂i · ∂µn̂j)n̂k.

This tells that the flat space-time has Π3(S2) topology of the SU(2)
QCD vacuum.

This is nothing but the topology of Π3(SO(3, 1)) ' Π3(SO(3)).

Knot Topology of Vacuum Space-time
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Physical Interpretation

Consider a flat R4 and introduce a global Cartesian coordinate basis
∂µ (µ = 0, 1, 2, 3). Choose the Minkowski metric gµν = ηµν , and let
∂µ are parallel to each other (i.e., let Γ α

µν = 0),

∇µ∂ν = Γ α
µν ∂α = 0.

Find the trivial connection Γ α
µν = 0 is metric compatible and

torsionless,

∇αηµν = 0,

C α
µν = Γ α

µν − Γ(0)α
µν = 0,

where C α
µν and Γ(0)α

µν are the contortion and the Levi-Civita
connection.
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Introduce a local orthonormal frame (i.e., tetrad) ea (a = 0, 1, 2, 3)

e0 = e α
0 ∂α = ∂0 (e α

0 = δ α
0 ),

ei = e α
i ∂α = n̂ α

i ∂α (e α
i = n̂ α

i with n̂ 0
i = 0), (i = 1, 2, 3).

Express the trivial connection Γ α
µν = 0 in the orthonormal basis. Find

the corresponding Γ ab
µ becomes the vacuum connection,

Γ ab
µ = −

ηαβ
2
(
eaα∂µe

bβ − ebα∂µeaβ
)

= Ω ab
µ ,

Γ ij
µ =

1
2
n̂i · ∂µn̂j , Γ 0i

µ = 0,

⇒ Γµ = Ωµ
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So the flat connection Γ α
µν = 0, in the orthonormal basis, becomes

identical to the SU(2) vaccum potential. This confirms that the
torsionless Minkowski space-time with flat connection has a
non-trivial Π3(S2) topology.

It is the tetrad (i.e., the spin structure), not the metric, which
describes the knot topology of the vacuum space-time.
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Knot is everywhere!

1 Non-linear sigma model (Faddeev and Niemi, Nature 1998)

2 Plasma (Faddeev and Niemi, PRL 1999)

3 Skyrme theory (Cho, PRL 2002)

4 Condensed matter
Two-component BEC (Cho, PRA 2003)
Two-gap SC (Babaev, PRL 2003; Cho, PRB 2004)

5 QCD
Knot glueball (Cho, PLB 2005)
QCD vacuum (Cho, PLB 2006)

6 Einstein’s theory
Vacuum space-time
Knot in gravity?
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Space-time tunneling: Gravito-instantons are proposed, but never
confirmed. With the tunneling, we can define “the θ-vacuum” in
Einstein’s theory.

The restricted gravity could be very useful in describing the
space-time of gravito-magnetic monopole.

1. Π2(S2) topology
2. Energy quantization (cf. charge quantization)
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Einstein’s Gravity

Reactivate the valence connection Zµ in the restricted gravity to
recover the full Einstein’s theory.

Find that Einstein’s gravity is nothing but the restricted gravity which
has the valence connection as a gauge covariant gravitational source.

Conclude that the restricted gravity describes the skeleton structure
and the core dynamics of Einstein’s theory. Establish the Abelian
dominance in Einstein’s theory.
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Discussion

Anatomy of Einstein’s theory: Dissect and decompose it to the
skeleton and the flesh. Find that the flesh (the valence connection)
can not move (has no dynamical role).

The skeleton can dance, and describes a restricted gravity which is
much simpler than Einstein’s gravity but has the full general
invariance. Moreover it becomes Abelian.

gµν → Gµ

Rµν −
1
2
R gµν = 0⇒

(
∇µGµν = 0

Gµν = ∂µGν − ∂νGµ

)
Massless spin-one graviton!
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This establishes the Abelian dominance (of a different type) in
Einstein’s theory.

A2 gravity describes Bonner and C metric, and B2 gravity describes
Einstein-Rosen-Bondi’s plane wave solution.

Knot topology of vacuum space-time and quantum tunneling: Π3(S2)
topology of the tetrad (spin structure)! Gravito-instantons and
θ-vacuum in quantum gravity?

Challenge: Quantize the massless spin-one graviton.
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