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Some features of stress tensor fluctuations:

Subtle correlations and anticorrelations

Non-Gaussian probability distribution

Larger on smaller scales



Effects in inflationary cosmology: density 
fluctuations and gravity waves

Stress tensor fluctuations during inflation lead to
expansion fluctuations during and after inflation.

These in turn lead to density fluctuations. 

These fluctuations are in addition to the usual, nearly 
scale invariant and Gaussian fluctuations coming from 

quantum fluctuations of the inflaton field.



Inflationary expansion followed by reheating 
and a radiation dominated universe

a(η) =
1

1−Hη
, η0 < η < 0,

a(t) = eH(t−tR) , t ≤ tR ,

tR = reheating time in comoving time

η0 = conformal time
when inflation begins

a(η) = 1 + H η, η > 0,

a(t) =
√

1 + 2H(t− tR), t ≥ tR.



Density Fluctuations - A Kinematic Model

K.W. Ng, C.H. Wu &LF,  PRD 75 103502 (2007)

Basic idea: Use the Raychuadhuri equation to find 
expansion fluctuations along geodesics, assuming Ricci 
tensor flucutuations driven by a conformal field, such 

as the EM field

Rµν = 8π(Tµν −
1
2
gµνT )



Assume σµν = ωµν = 0, so that

dθ

dλ
= −Rµνuµuν − 1

3
θ2

Let θ = θ0 + θ1, where θ0 = 3ȧ/a, and
dθ1

dt
= − (Rµνuµuν)q −

2
3
θ0θ1

θ1(t) = −a−2(t)
∫ t

t0

dt′ a2(t′) (Rµνuµuν)q

Initial condition:           at the beginning of inflationθ1 = 0



〈θ(η1) θ(η2)〉 − 〈θ(η1)〉〈θ(η2)〉 =

a−2(η1) a−2(η2)
∫ η1

η0

dη a−1(η)
∫ η2

η0

dη′ a−1(η′) E(∆η, r)

E(∆η, r) = flat space energy density correlation function

Stress tensor correlation function

 Conformally invariant fields:

CRW
µναβ(x, x′) = a−4(η) a−4(η′) Cflat

µναβ(x, x′)

Cµναβ(x, x′) = 〈Tµν(x)Tαβ(x′)〉 − 〈Tµν(x)〉〈Tαβ(x′)〉
(conformal anomaly cancels)



Conservation law for a perfect fluid:

ρ̇ + θ(ρ + p) = 0

Effect of expansion  fluctuations on 
redshifting after reheating

p = wρ

〈(
δρ

ρ

)2
〉

= (1 + w)2
∫ ηs

0
dη1a(η1)

∫ ηs

0
dη2a(η2)

(〈θ(η1) θ(η2)〉 − 〈θ(η1)〉〈θ(η2)〉)

Let and integrate the conservation law 
to find the density fluctuations:

ηs = conformal time of last scattering



ηs = conformal time of last scattering

(Non-Gaussian fluctuations)

Cρ(x1, x2) =
〈

δρ(x1)
ρ

δρ(x2)
ρ

〉

= (8π)2 "4p (1 + w)2
∫ ηs

0

dη1

a(η1)

∫ ηs

0

dη2

a(η2)

∫ η1

η0

dη

a(η)

∫ η2

η0

dη′

a(η′)
E(∆η, r)

!p = Planck length

Power spectrum of the density fluctuations:

P(k) =
k3

2π2

∫
d3r e−ikr Cρ(r, ηs)

Density correlation function:



Result:

P(k) ≈
16!4pk

4

405 π

(
−|kη0|3 +

3
π
|kη0|2 + · · ·

)

Grows as the duration of inflation increases.

Interpret as due to non-cancellation of anti-correlated 
fluctuations.θ

Not scale invariant - more power on shorter scales.



II.   A Dynamical Model for Density Fluctuations

Consider a single scalar inflaton field     and 
a fluctuating conformal field stress tensor.

ϕ

ϕ
ϕ

∆ϕSolve the coupled Einstein-    equations to find         , the 
fluctuation in    induced by the stress tensor fluctuations.

Basic idea:

!ϕ + V ′(ϕ) = 0

Gµν = 8πT total
µν = 8π(T infl

µν + T conf
µν )

S.P. Miao, K.W. Ng, R.P. Woodard, C.H. Wu &LF,  PRD 82 
043501 (2010)



First order perturbations:

Inflaton: ϕ(t,x) = ϕ0(t) + δϕ(t,x)

Metric:

uµ = − gµν∂νϕ√
−gαβ∂αϕ∂βϕ

= δµ
0

Unit normal to surfaces of 
constant ϕ

ds2 = −dt2 + 2a(t)h0i(t,x)dtdxi + a2(t)
[
δij + hij(t,x)

]
dxidxj

Obtain a pair of 2nd order coupled equations 
for      andδϕ hµν



Eliminate        and obtain an equation forhµν

(spatial Fourier transform)

(slow roll approximation)

Note: the expansion does not appear explicitly in 
this model, but is still here because                    .θ1 = δij ḣij/2

B(t, k) = δϕ(t, k)/ϕ̇0

(
∂2

t + 5H ∂t + 6H2 +
k2

a2

)
Ḃ(t, k) = 8π T conf

tt



= (8π)2
"4p
k2

∫ 0

η0

dη1

a(η1)

∫ 0

η0

dη2

a(η2)

∫ η1

η0

dη sin[k(η − η1)]
∫ η2

η0

dη′ sin[k(η′ − η2)] E(∆η, k)

Set            at η = η0

Result for the momentum space correlation function:

B = 0

〈B2〉k

∼ −
!4p H2 |η0|3

480π2
+

!4p H2 η2
0

600π k

Can calculate       from         using eitherPk 〈B2〉k

the conservation law

differential redshift (Sachs-Wolfe formula)



Associated power spectrum of density 
perturbations:

Pk ≈
2 π "4pH

4

15

(
−|kη0|3 +

4π

5
|kη0|2 + · · ·

)

leads to an unobservable delta function term in the 
spatial correlation function, so ignore this term

Power spectrum is not scale invariant and depends 
upon the duration of inflation.



It must be a small overall contribution to the total 
power spectrum, which leads to a constraint on the 

scale factor change during inflation:

1
a0

< 1042

(
1012 GeV

TR

)3

Allows enough inflation to solve the horizon and 
flatness problems

Pk ≈
8π "4p H4

75
k2 η2

0



Does the         dependence contradict Weinberg’s 
result that radiative effects in inflation should 

grow no faster than ln(a)?

One interpretation of our result is that it is not so 
much growing, as always large - the contribution of 

very energetic modes is preserved.

η2
0



 Use of transplanckian modes.

Dominant contribution comes from modes with                 

Is this a problem?

This effect might offer a probe of 
transplanckian physics in the form of a 
small non-Gaussian, non-scale invaraint 

component in the CMB.

λ ≈ 10−8 "p (TR = 1012 GeV)



Gravity Waves from Sress Tensor 
Fluctuations in Inflation

Write gµν = γµν + hµν

background  metric metric perturbation -
tensor modes

Impose the transverse tracefree (TT) gauge:

hµν
;ν = 0 h = hµ

µ = 0 hµν uµ = 0

covariant derivative on the 
background

a timelike vector; here the
comoving obverver 4-velocity

C-H Wu, J-T Hsiang, K-W Ng, &LF,  PRD 84 103515 (2011)



Result: tensor modes in a spatially flat universe 
behave as massless scalars

Lifshitz 1946

!S hµ
ν = 0

scalar wave operator

Consequences:
 classically stability

gravitons are equivalent to a pair of massless 
scalar fields

!S ϕ = ϕ;ν
;ν = 0



!Sh ν
µ = −16π GS ν

µ

Generation of gravity waves by a source:

S ν
µ = the transverse-tracefree part of the 

source stress tensor

(most easily defined by the use of a 
projection operator in momentum space)



Semiclassical theory: gravity couples to the renormalized 
expectation value of a quantum matter field

(effects of stress tensor fluctuations ignored)

Effects on gravity wave modes during inflation from a 
conformal field (e.g., EM)

A modification to gravity wave modes proportional 
to the expansion factor S during inflation:

h ν
µ → h ν

µ + h′
µ

ν h′
µ

ν ∝ S

[J.T. Hsiang, D.S. Lee, H.L. Yu &LF,  PRF 82,  084027 (2011)]



Generation of gravity waves by a fluctuating source:

!Sh ν
µ = −16π GS ν

µ
Integrate

using a retarded Green’s function

!SGR(x, x′) = −δ(x− x′)√
−γ

and form the metric correlation function 

in terms of a stress tensor correlation function

K ν σ
µ ρ (x, x′) = 〈h ν

µ (x) h σ
ρ (x′)〉 − 〈h ν

µ (x)〉〈h σ
ρ (x′)〉

C ν σ
µ ρ (x, x′) = 〈S ν

µ (x) S σ
ρ (x′)〉 − 〈S ν

µ (x)〉〈S σ
ρ (x′)〉



CRW
µναβ(x, x′) = a−4(η) a−4(η′) Cflat

µναβ(x, x′)

 Conformally invariant fields:

(conformal anomaly cancels)

Take spatial Fourier transforms:

Â(η,k) ≡ 1
(2π)3

∫
d3x eik·xA(η,x)

and take         to be in the z-direction.  k

Need only x & y components of Ĉ ν σ
µ ρ (η1, η2, k)



Power spectrum as a Fourier transform of a 
correlation function:

P (k) =
1

(2π)3

∫
d3u ei k·u C(η = η′,u)

equal time 
correlation function

Note: “power spectrum” in cosmology usually refers to 

P(k) = 4πk3 P (k)

Here        is a spatial component ofP (k) K̂ ν σ
µ ρ (η, η, k)



First model:  assume that the gravity wave 
fluctuations vanish at some initial time       

(the beginning of inflation) and then integrate 
forward in time to the end of inflation at

Ps(k) = 64(2π)8
∫ ηr

η0

dη1

∫ ηr

η0

dη2 Ĝ(η, η1, k) Ĝ(η, η2, k) Ĉflat(η1 − η2, k)

Power spectrum:

Result:

Ps(k) = −H2 S2

3π2 k
(1 + k2 H−2)

S = expansion factor during inflation



Three remarkable features:

1) Negative power

2) Grows as the duration of inflation increases

3) Highly blue tilted

∝ S2

P (k) ∝ k



Second model: assume that the coupling to the 
fluctuating stress tensor is switch on gradually with 

a switching function epη

Now 1/p is the approximate conformal time at 
which the interaction begins.

Result for the power spectrum:

Pe(k) = −H3(1 + k2/H2) S

8π2 k2



Same three remarkable features:

1) Negative power

2) Grows as the duration of inflation increases

3) Highly blue tilted

P (k) ∝ k0

∝ S



An aside on negative power spectra:

Usually, the Wiener-Khinchine theorem requires a 
non-negative spectrum.

However, for quadratic quantum operators, such as a 
stress tensor, the positive definite quantity in this 

theorem does not exist.

This allows allow negative spectra.

Example: the flat space EM energy density

E(∆η, k) = −k4 sin(k∆η)
960π5 ∆η

E(0, k) = − k5

960π5

[J.T. Hsiang, C.H. Wu &LF,  Phys. Lett.  A 375, 2296 (2011)]



Interpret a negative power spectrum as having the 
opposite correlation/anticorrelation behavior as a 

positive spectrum.

P (k)→ −P (k)⇒ C(r)→ −C(r)

Normally,               but this quantity is not defined 
when the power spectrum is negative.

C(0) > 0



Explore the exponentially switched model:

Corresponding spatial correlation function:

Ce(r) = −H3 S

4r
(A delta function term

has been dropped.)

Pe(k) = −H3(1 + k2/H2) S

8π2 k2

Assume efficient reheating at the end of inflation 
to an energy of ER



Consider modes of the order of the horizon size today:

If             h > 10−5 (Ce > 10−10)

the tensor perturbations would have been detected.

This leads to the constraint:

S < 1040

(
1016GeV

ER

)7

Allows enough inflation to solve the horizon and 
flatness problems



Can we take the power spectrum seriously 
for much smaller wavelengths?

At scales of the order of 100km, LIGO has set 
limits of 

S < 1025

(
1013GeV

ER

)7

ER < 1013GeV

h < 10−24

This implies

and



Dominant contribution comes from modes wavelengths 
far less than the Planck length at the beginning of inflation.                 

Analogous to the use of transplanckian modes in 
Hawking’s derivation of black hole evaporation.

Alternative is to give up local Lorentz symmetry, e.g.,
postulate nonlinear dispersion relations (Jacobson, Unruh)

This effect might offer a probe of transplanckian physics in 
the form of a non-Gaussian, non-scale invariant spectrum 

of gravity waves.

Ideally, the same physics should govern both cosmology 
and black holes.



Summary

1) Density perturbations and gravity waves can be 
generated by quantum stress tensor fluctuations 

during inflation.

2) The resulting spectra are non-Gaussian and 
non-scale invariant.

3) These spectra seem to imply a limit on the 
duration of inflation.

4) These  effects may offer a probe of transplanckian 
physics.


