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1. Introduction

General Relativity Black hole mechanics
(GeneralRelry |
oy e
‘ Black hole thermodynamics
1 -
thermodynamics ‘ General Relativity
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Ted Jacobson (1995) assumed the first law 60 =TdS holds for

local Rindler horizons. Then the Einstein equation can be derived.

The Einstein equation was also derived from thermodynamical laws
of black hole horizons:

Y.Gong, A.Wang, Phys.Rev.Lett. 99, 211301 (2007)
R.G. Cai and S.P. Kim, J.High Energy Phys. 02(2005)050.

C. Elng, R. Guedens, and T. Jacobson, Phys. Rev. Lett. 96, 121301
(2006).

M.Akbar and R.G. Cai, Phys. Lett. B 635, 7(2006).
R.G. Cai, and L.M.Cao, Phys. Rev. D 75, 064008 (2007)
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In 1965, W.J.Cocke (Ann. Inst. Henri Poincare, 2, 283) proposed a maximum
entropy principle for self-gravitating fluid.

S: total entropy of fluid
M: total mass of fluid

0S =0 [

Tolman-Oppenheimer-Volkoff
(TOV ) equation:

m(r 4713 (p/3)]
2y =tk )

dr
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2. Maximum entropy principle for radiation
Sorkin, Wald, Zhang, Gen.Rel.Grav. 13,1127 (1981)

In 1981, Sorkin, Wald, and Zhang (SWZ) derived the TOV equation of a self-gravitating
radiation from the maximum entropy principle.

Consider a box of radiation (photon gas) confined within radius £ . The
stress-energy tensor is given by

1
'Ta.b = PUgUp gp(gab —+ 'U'aub)
The radiation satisfies: 1
p = bT*, p= 3P

s = ctpgﬁl
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Assume the metric of the radiation takes the form
2m(r)

7

—1
ds® = gtt(r)dtg + [1 — ] dr? + 1r2d)?

The constraint Einstein equation Gog = 871 vields
m' (r)
P = -
4?”.2

The total mass within R is M = m(R).
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The total entropy of the radiation is

R Y (1 —1/2
S = 4?’/ s(r) [1 — _m(r)] r2dr
0

.f-

R ‘}. s _1;2
= 4??(}-/ f.:r3/4 [1 — _m(r)] r2dr
. .

R 3/4 —1/2
1 2m(r
— (4?*)”%}] [—2 -n..r.."(-'r')] [1 — ’m(;)] ridr .
o |7 ,

Let L =L(m,m") = [—Q-m."(-'r'j‘ [1 — m(r)] r
”

’
Our purpose is to find the function m(r) such that
05 = 0 for fixed M.

Since  dm(0) = om(R) = 0, the extrema of S is equivalent to the
Euler-Lagrange equation:

d [ OL B % 0
dr \ Om' om
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Straightforward calculation gives

3 5 3 3 L, 3,
m''re + —m "'mr + —m ‘r——mr— —m'm=0.
16 3 3 4 2

m' (1)

Amr?

/
Using p = toreplace 711 ?'nH- , we arrive at the TOV

equation

d (p/3) = + p/3)[m(r) + 47r3(p/3)]
dar rlr — 2-?'11.(?‘)} '
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3. Maximum entropy principle for a
general fluid (sijie Gao, arxiv:1109.2804 )

* To generalize SWZ’s treatment to a general fluid, we

first need to find an expression for the entropy
density S .

* The first law of the ordinary thermodynamics:

_ 1 |
48 = —dE+ Zav - Lan

o T r T
Rewrite In terms of densities:
1 P 7
d(sV) = —d(pV)+ Zdv — Zd(nV
(sV) T (p )+T T (nV)
Expand: v vds — Yodv +Vdot Lav— Foav - Fva
pand: v+ v pdV + Vdp+ L av — Lpav — Lvan

The first law in a unit volume:
1 7
ds = —dp — —dn
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Thus, we have the Gibbs-Duhem relation

—1(J+J n)
s = — p— pun
PP

(20)

Choose (p,n) as independent thermodynamic variables. Assume

s=s(p.n), o =plp.n), p=plp,n)

For example, the thermodynamic quantities for a monatomic ideal gas are

3
= —nkT
P > n
p = nkl.
3 | | 3 D [ 2mmk
s = 5?1.!@.111 I'"—nklnn + 5?1.11. 3 + In 3
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Our task is to find functions m(r) and n(r) such that the total entropy

R. ) . _lXQ
] 2m(r ;
S =A4m s(r) |1 — # rdr
0 r

1S an extrema.

In addition to the constraint dm(0) = dm(R) = 0. it is also natural to
require the total number of particles

R o —1/2
2m(r
N = 4,7/ n(r) [1 — —( )] 2 dr
0 r
to be invariant. i.e.. 0N = 0.

Following the standard method of Lagrange multipliers. the equation
of variation becomes
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Define the “total Lagrangian™ by

2m(r)
’

~1/2
L(im,m',n)=s(p(m’),n) [1 — ] r2 + An(r) [l _

r

Now the constrained Euler-Lagrange equation is given by

oL
— = 0. 30
on | (30)
d OL 0L
— +-— = 0. 31
dr Om’  Om (31)
Thus, Eq. (30) yields
s
on +
Using  d 1a’ Pan . we have
JS ! f::j) "-5 — — _) - ?1 - v r ‘.' 7 r
N =0 (33)
T — . .! .

om'’  Opom’ T Admxr?

Note that 9L _ 9s » (1_@

. = —7
om’ om’ T

)1/2 ds  0s dp 1 1

d oL  T(m'r —m)—r(r—2m)1T"
Thus, —— = :
2012/2/28°  dr Om/ AT T2(r — 2m)3/2r2

2?11(7’)}1/2 5
re.
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Using Eq. (34), we have

OL  _ r‘(l—

Om

_ r(1_2_m)‘3”(ﬁ_p)

Ti

So the Eular-Lagrange Eq. (31) yields

(drpr® +m)T + (r = 2m)rT’ = 0. (40)

The constraint Eq. (33) yields
Y (41)
Rewrite Eq. (20) as

p="Ts+pun—p. (42)
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The differential of p is
dp =T'ds + sdT' + pdn + ndp — dp. (43)
By substituting Eq. (19), we have

dp = sd1l"+ ndp . (44)

It follows immediately that

P (r)y=sT'(r)+np'(r). (45)

Substituting Eqs. (33). (20) and (41) into Eq. (45), we have

T

.Tf: p
p+p

(). (46)

Substituting Eq. (46) into Eq. (40), we obtain the desired TOV equation

o, (p+ p)(4mr3p +m) /
b= r(r—2m) ' (47)
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4. Maximum entropy principle for
charged fluid

In coordinates (¢.r.6, ©), assume that a spherically symmetric charged
fluid has the line element

2m(r) N Q> (r)
2

T

—1
ds® = gu(r)dt® + [1 — -‘ dr® +r2df? + r*sin? 0do? . (53)

The stress tensor is Top = Tap + .ﬁM
where .Ta,b = p-u-“"u-b + p(ga,b + u‘aﬁ“‘b) )

ab

| 1 ] 1 .
'TEMr — FCLLFbC — _ga,thdFCd '
47 4

Maxwell’s equations: Vs F*" = dmj® = dmp,u
?[ﬂFbc] =0,
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1

tr __
The solution is P = T.QWQ(T)
- y
and Q(T]:[ dr'? Yrr edrf- (’J()
]

Then the time-time component of the Einstein’s equation gives

QQ

The total entropy of matter takes the form

B ~21—1/2
2m ()
;9 = f 5’('.") [J_ — ?” + vg ] T'Qd'}" .
0 r r

For simplicity, we assume all the particles have the same charge ¢. Thus.

the charge density is proportional to the particle number density n

Pe = qn .
Together with Eq. (62), we have
/ 13 2 1X2
n = @ 1 — @ + Q— (62)
42 r 72
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So the Lagrangian is written as

Lim,m',Q,Q") =s [1 _m X

The conservation of particle number N is equivalent to the conservation of
charge with the radius R. Now the constraints are

m(0) =Q(0) =0, m(R) = constant, Q(R) = constant .

With these constraints, the extrema of S leads to the following Euler-
Lagrange equations

d 0L 0L

= = =0 65
I 00 90 (65)
d JL gL 0 (66)

— 4
dr om’  Om

Note that § = 5(p, n) = s(p(m/, Q. Q). n(Q,m,Q")).

Os Os Op N ds on

Q) Op 0~ On 0Q)

1 Q pwl 1 [1 QerQQ}UQ-

CTAnr3 T q 4dmr?
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Thus,

oL _ 1Q [ 2m Q) a1t
oQ" T 4mr r 2 T q4r
To calculate %, first note that
ds ﬁ dp N ds On
0Q — OpIQ  OndQ
- 1 qQ w QQ’ 1 2m  Q? —1/2
B T 473 T dwgrt r 2 '
Then
OL _  4mr?qQsT + (fgr + VIQu)Q'
0Q A2 f3/2 '
2m  (Q*
where 1 _
f 5
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0 = qQ*T" +Q[—mqT + T — qrTm/ + 4xqr3sT? + \/ frTuQ" — 2mqrT’
+ T+ 2 (r = 2m) (T = Tp') + Q*[qTQ + /fr(pT’ —Ti')]. (74)

Using (45)
p(r) = sT'(r) +nu'(r). (45)

to eliminate 1" in Eq.(79)., we have

2 _ r r r 2 r P r
0 = 0T+ VIre(r Em)(si’j + nuT”" —Tp') N Q*/fr(sTT T—El—np.T Ty
+ qTQ*Q + Q[—mqT + qrT — qrTm' + dmwqrisT? + \/ frTuQ" — 2mqrT’ + qr?T'].
(75)
Eliminating s, p and n via Egs. (20) and (62), we rewrite Eq. (75) as
0 = 4 (r® —2mr + Q%) (p+ p)T' — 4w (r® — 2mr + Q*)Tp' + TQ*Q"
+ QQ'(rT +4nri(p+ p)T + Q*T' + 2T — mT — 2rmT’ — rm'T) (76)
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Now we begin to calculate Eq. (66). Note that

ds  0s dp 1 (77)
om’  Ooom’  Amr2T
Then
dJdL 1 [ _ ‘)m Q2 —1/2 5 (78)
= e
om’  4mxr?T T 72
—3/2
OL . 2m Qz 2 ot p
R — — 7’ - - .
dm r 72 T
Thus, Eq. (66) becomes
Q*T — 4mr*T(p + p) + m/Tr* = TrQQ" —r1T'Q* — 13T’
—mrT +2mr*T" = 0. (81)

Combining Eq. (76) and Eq. (81), one can eliminate 77. Then by substi-
tuting Eq. (59) for m/, we finally find

! m 2 2m 72\ 1
p = Q0 —(p+0p) (4;. rp + — — QS) (1 — — Qz) : (82)

4mrd r T r

This is exactly the generalized Oppenheimer-Volkoft equation for charged
fluid ().D. Bekenstein, Phys.Rev. D, 4, 2185 (1971)
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5.Conclusions

* By applying the maximum entropy principle to a
general self-gravitating system, we have derived the
TOV equation of hydrostatic equilibrium, which was
originally derived from the Einstein equation. We
only used the constraint Einstein equation and the
ordinary thermodynamic relations. This is a strong
evidence for the fundamental relationship between
gravitation and thermodynamics.
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Thank you!
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