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Abstract and Outline
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• We are investigating the dynamics of a new Poincar é gauge theory of gravity
model , the BHN PG model which has cross coupling between the spin-0 + and
spin-0 − modes, in a situation which is simple, non-trivial, and yet may give
physically interesting results that might be observable.

• To this end we here consider a very appropriate
situation—homogeneous-isotropic cosmologies —which is relatively simple, and
yet all the modes have non-trivial dynamics which reveals physically interesting and
possibly observable results.

• More specifically we consider manifestly isotropic Bianchi class A cosmologies;
for this case we find an effective Lagrangian and Hamiltonian for the dynamical
system. The Lagrange equations for these models lead to a set of first order
equations that are compatible with those found for the FLRW models and provide a
foundation for further investigations.

• The first order equations are linearized . Numerical evolution confirms the late

time asymptotic approximation and shows the expected effects of the cross parity

pseudoscalar coupling. We can fine tune our model by these coupling parameters

to fit our accelerating universe.



Background and Motivation
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• All the known physical interactions (strong, weak, electromagnetic and not

excepting gravity) can be formulated in a common framework as local
gauge theories:
In Electrodynamics: field strength ~E and ~B can be specified as

~E = −∇Φ−
∂ ~A

∂t
and ~B = ∇× ~A,

where Φ and ~A are potentials. ~E and ~B are invariant under transformation of the Φ and the
~A (gauge freedom),

Φ′ = Φ+
∂Λ

∂t
and ~A

′ = ~A−∇Λ,

i.e. a gauge transformation, where Λ is an arbitrary scalar function.

• However the standard theory of gravity, Einstein’s GR, based on the

spacetime metric, is a rather unnatural gauge theory

• Physically (and geometrically) it is reasonable to consider gravity as a

gauge theory of the local Poincaré symmetry of Minkowski spacetime

• There is no fundamental reason to expect gravity to be parity invariant so no
fundamental reason to exclude odd parity coupling terms

• Accelerating universe



The Poincar é gauge theory
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In the Poincaré gauge theory of gravity (PG Theory)

[Hehl ’80, Hayashi & Shirafuji ’80],

the local gauge potentials are, for translations, the orthonormal co-frame,

(which determines the metric):

ϑα = eαidx
i → gij = eαie

β
jηαβ, ηαβ = diag(−1,+1,+1,+1),

and, for Lorentz/rotations, the metric-compatible (Lorentz) connection

Γαβidx
i = Γ[αβ]

idx
i.

The associated field strengths are the torsion and curvature:

Tα := dϑα + Γαβ ∧ ϑ
β =

1

2
Tαµνϑ

µ ∧ ϑν ,

Rαβ := dΓαβ + Γαγ ∧ Γγβ =
1

2
Rαβµνϑ

µ ∧ ϑν ,

which satisfy the respective Bianchi identities:

DTα ≡ Rαβ ∧ ϑ
β, DRαβ ≡ 0.



General PG Lagrangian
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• The general quadratic PG Lagrangian density has the form (see [Baekler,
Hehl and Nester PRD 2011])

L [ϑ,Γ] ∼ κ−1[Λ + curvature + torsion2] + ̺−1curvature2,

where Λ is the cosmological constant, κ = 8πG/c4, ̺−1 has the dimensions of
action.

• Gravitational field eqns are 2nd order eqns for the gauge potentials:

δϑαi : Λ +R+DT + T 2 +R2 ∼ energy-momentum density

δΓαβ
k : T +DR ∼ source spin density,

where R and T represent curvature and torsion.
Bianchi identities =⇒ conservation of source energy-momentum & angular
momentum.



good dynamic modes
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• Investigations of the linearized theory identified six possible dynamic

connection modes carrying spin-2±, 1±, 0±.
[Hayashi & Shirafuji ’80, Sezgin & van Nuivenhuizen ’80]

• A good dynamic mode transports positive energy at speed ≤ c.
At most three modes can be simultaneously dynamic;
all the cases were tabulated;

many combinations are satisfactory to linear order.

The Hamiltonian analysis revealed the related constraints

[Blagojević & Nicolić, 1983].

• Then detailed investigations

[Hecht, Nester & Zhytnikov ’96, Chen, Nester & Yo ’98, Yo & Nester ’99, ’02]

concluded that effects due to nonlinearities could be expected to render all

of these cases physically unacceptable—

except for the two “scalar modes”: spin-0+ and spin-0−.



BHN Lagrangian
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• Generalizing [Shie, Nester & Yo PRD ’08], we considered two dynamic

spin-0+ and spin-0− modes [Chen et al JCAP ’09].

• Now, the model has been extended to include parity violating terms by

[BHN PRD ’11].

• The Lagrangian of the BHN model is

L[ϑ,Γ] =
1

2κ

[

−2Λ + a0R−
1

2

3
∑

n=1

an
(n)

T 2 + b0X + 3σ2VµA
µ

]

+
1

2̺

[

w6

12
R2 +

w3

12
X2 +

µ3
12
RX

]

,

where R & X = 6R[0123] are the scalar & pseudoscalar curvatures,

Vµ ≡ Tααµ, Aµ ≡ 1
2ǫµν

αβT ναβ are the torsion trace & axial vectors and

b0 & σ2 & µ3 are the odd parity coupling constants.



Cosmological model
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• Earlier PGT cosmology: Minkevich [e.g., ’80, ’83, ’95, ’07] and Goenner &

Müller-Hoissen [’84];
recent: Shie, Nester & Yo [’08], Wang & Wu [’09], Chen et al [’09], Li, Sun &

Xi [’09ab], Ao, Li & Xi [’10, ’11], Baekler, Hehl & Nester [’11].

• Homogeneous isotropic cosmology is the ideal place to study the dynamics
of the spin-0± modes of the BHN model.

• Here, we consider the homogeneous, isotropic Bianchi I & IX cosmological

model. The isotropic orthonormal coframe:

ϑ0 := dt, ϑa := aσa,

where a = a(t) is the scale factor and σj depends on the (never needed)

spatial coordinates in such a way that

dσi = ζǫijkσ
j ∧ σk,

where ζ = 0 for Bianchi I (equivalent to the FLRW k = 0 case, which

appears to describe our physical universe) and ζ = 1 for Bianchi IX, thus

ζ2 = k.
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• isotropy =⇒ non-vanishing connection one-form coefficients

Γa0 = ψ(t)σa, Γab = χ(t)ǫabc σ
c,

=⇒ nonvanishing curvature components:

Ra0b0 =
ψ̇δab
a
, Rab0c =

χ̇ǫabc
a

,

Ra0bc =
2ψ(χ− ζ)ǫabc

a2
, Rabcd =

(ψ2 − χ2 + 2χζ)δabcd
a2

.

=⇒ scalar and pseudoscalar curvatures:

R = 6[a−1ψ̇ + a−2(ψ2 − [χ− ζ]2) + ζ2],

X = 6[a−1χ̇+ 2a−2ψ(χ− ζ)].
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• isotropy =⇒ nonvanishing torsion tensor components

T ab0 = u(t)δab , T abc = −2x(t)ǫabc.

they depend on the gauge variables:

u = a−1(ȧ− ψ), x = a−1(χ− ζ).

• isotropy =⇒ energy-momentum tensor has the perfect fluid form with an

energy density and pressure: ρ, p.

◦ We assume that the source spin density vanishes.

◦ When p = 0, the gravitating material behaves like dust with

ρa3 = constant.



effective Lagrangian, eqns
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• The dynamical equations for the homogeneous cosmology can be obtained

by imposing the Bianchi symmetry on the field equations found by BHN
from the BHN Lagrangian density=⇒

• These same dynamical equations can be obtained directly (and

independently) from a classical mechanics type effective Lagrangian (a
variational principle), which in this case can be simply obtained by

restricting the BHN Lagrangian density to the Bianchi symmetry.

• This procedure is known to be successful for all Bianchi class A models

(which includes our cases) in GR, and it is conjectured to also be true for
the PG theory. [Our calculations will explicity verify this for isotropic Bianchi

I and IX models.]
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• The effective Lagrangian Leff = LG + Lint includes the interaction

Lagrangian:
Lint = pa3, p = p(t) pressure,

and the gravitational Lagrangian:

LG =
a3

κ

[

−Λ +
a0
2
R+

b0
2
X −

3

2
a2u

2 + 6a3x
2 + 6σ2ux

]

+
a3

̺

[

−
w6

24
R2 +

w3

24
X2 −

µ3

24
RX

]

with a2 < 0, w6 < 0, w3 > 0, −4w3w6 − µ2 > 0, these signs

are physically necessary for least action.

• In the following we often take for simplicity units such that κ = 1 = ̺.

• For convenience we introduce the modified parameters ã2, ã3, σ̃2 with the
definitions

ã2 := a2 − 2a0, ã3 := a3 −
1

2
a0, σ̃2 := σ2 + b0.
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• The energy function obtained from LG is an effective energy, it is just the

“00 constraint”, Hamiltonian with magnitude −ρa3,

E = a3

{

3

2
ã2u

2 − 3a0H
2 − 6ã3x

2 − 3ã2uH + Λ

+6σ̃2x(H − u)− 3a0
ζ2

a2

−
w6

24

[

R2 − 12R

{

(H − u)2 − x2 +
ζ2

a2

}]

+
w3

24

[

X2 + 24Xx(H − u)
]

−
µ3

24

[

RX − 6X

{

(H − u)2 − x2 +
ζ2

a2

}

+ 12Rx(H − u)

]

}

,

• it satisfies
d(ρa3)

dt
= −p

da3

dt
,

so ρa3 is a constant when p = 0.



The Dynamical Equations
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• the Lagrange eqns, ψ, χ and a:

d

dt

∂LG

∂ψ̇
=

d

dt

(

a2
[

3a0 −
w6

2
R−

µ3

4
X
])

=
∂LG

∂ψ

= 3(a2u− 2σ2x)a
2 +

[

6a0 − w6R−
µ3

2
X
]

aψ

+
[

6b0 −
µ3

2
R+ w3X

]

a(χ− ζ), =⇒ Ṙ, Ẋ.

d

dt

∂LG

∂χ̇
=

d

dt

(

a2
[

3b0 −
µ3

4
R+

w3

2
X
])

=
∂LG

∂χ

= −6(2a3x+ σ2u)a
2 −

[

6a0 − w6R −
µ3

2
X
]

a(χ− ζ)

+
[

6b0 −
µ3

2
R+ w3X

]

aψ, =⇒ Ṙ, Ẋ.
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d

dt

∂LG

∂ȧ
=

d

dt

(

−a23[a2u− 2σ2x]
)

=
∂LG

∂a
+
∂Lint

∂a

= 3a−1L−
(a0
2

−
w6

12
R −

µ3

24
X
)

[a2R+ 6(ψ2 − [χ− ζ]2 + ζ2)]

−

(

b0
2

+
w3

12
X −

µ3

24
R

)

[a2X + 12ψ(χ− ζ)]

+3a2(a2u− 2σ2x)u− 6a2[2a3x+ σ2u]x+ 3pa2, =⇒ u̇, ẋ.

• First order eqns from:

ȧ = aH

ẋ = −Hx−
X

6
− 2x(H − u),

Ḣ − u̇ =
R

6
−H(H − u)− (H − u)2 + x2 −

ζ2

a2
.



First order equations with parity coupling
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ȧ = aH,

Ḣ =
1

6a2
(ã2R− 2σ̃2X)− 2H2 +

ã2 − 4ã3
a2

x2 −
ζ2

a2

+
(ρ− 3p)

3a2
+

4Λ

3a2
,

u̇ = −
1

3a2
(a0R+ σ̃2X)− 3Hu+ u2 −

4a3
a2

x2

+
(ρ− 3p)

3a2
+

4Λ

3a2
,

ẋ = −
X

6
− (3H − 2u)x,

−
w6

2
Ṙ−

µ3

4
Ẋ =

[

3ã2 + w6R+
µ3

2
X
]

u−
[

6σ̃2 −
µ3

2
R+ w3X

]

x

w3

2
Ẋ −

µ3

4
Ṙ =

[

−6σ̃2 +
µ3

2
R − w3X

]

u−
[

12ã3 + w6R+
µ3

2
X
]

x

For our numerical evolution we consider only the case of dust p = 0, (a good

approximation except at early times).



Hamiltonian formulation
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• canonical conjugate momentum

Pa ≡
∂L

∂ȧ
= −3a2 [a2u− 2σ2x] ,

Pψ ≡
∂L

∂ψ̇
= a2

[

3a0 −
w6

2
R−

µ3
4
X
]

,

Pχ ≡
∂L

∂χ̇
= a2

[

3b0 +
w3

2
X −

µ3
4
R
]

.
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• the effective Hamiltonian

Heff = Paȧ+ Pψψ̇ + Pχχ̇− Leff

= a
3(Λ− p)− 6aa3(χ− ζ)2 +

3σ2
2a

2(χ− ζ)

a2

+
3a3

2α
(w3a

2

0 − w6b
2

0 + µ3b0a0)

+Pa

[

σ2

a2

(a

2
− χ+ ζ

)

+ ψ

]

+Pψ

[

−ψ
2 + (χ− ζ)2 − ζ

2
−

(b0µ3 − 2a0w3)a
2

2α

]

1

a

+Pχ

[

−2ψ(χ− ζ)−
(a0µ3 + 2b0w6)a

2

2α

]

1

a

+PψPχ
[µ3

6α

] 1

a
+ P

2

ψ

[w3

6α

] 1

a
+ P

2

χ

[

−
w6

6α

] 1

a
+ P

2

a

[

−
1

6a2

]

1

a
,

where α := −w3w6 −
µ2
3

4 .
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• the six Hamilton equations are

ȧ =
∂H

∂Pa
=

[

σ2

a2

(a

2
− χ+ ζ

)

+ ψ

]

−
Pa

3a2a

ψ̇ =
∂H

∂Pψ
=

1

a

[

−ψ2 + (χ− ζ)2 − ζ2 −
µ3(3a2b0 − Pχ)− 2w3(3a2a0 + Pψ)

6α

]

χ̇ =
∂H

∂Pχ
=

1

a

[

−2ψ(χ− ζ)−
µ3(3a2a0 − Pψ) + 2w6(3a2b0 + Pχ)

6α

]

Ṗa = −
∂H

∂a
=

H− Pa
[

σ2
a2

(a− χ+ ζ) + ψ
]

a
− 4a2

[

3(w3a20 − w6b20 + µ3b0a0)

2α
+ (Λ− p)

]

+2

[

6a3(χ− ζ)2 + Pψ
(b0µ3 − 2a0w3)

4α
+ Pχ

(a0µ3 + 2b0w6)

4α

]

−
9σ2

2
a(χ− ζ)

a2

Ṗψ = −
∂H

∂ψ
= −Pa +

2

a

[

Pψψ + Pχ(χ− ζ)
]

Ṗχ = −
∂H

∂χ
= 12aa3χ−

3σ2
2
a2

a2
+ Pa

σ2

a2
+

2

a
[Pχψ − Pψ(χ− ζ)].



Linearize and Normal Modes
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• By dropping higher than linear order terms in {H,u, x,R,X}, we can lead

our model to the first order linearized versions of equations

ȧ = aH, (1)

3a2Ḣ =
1

2
ã2R− σ̃2X, (2)

3a2u̇ = −a0R− σ̃2X, (3)

ẋ = −
X

6
, (4)

−
w6

2
Ṙ −

µ3

4
Ẋ = 3ã2u− 6σ̃2x, (5)

−
µ3

4
Ṙ +

w3

2
Ẋ = −6σ̃2u− 12ã3x, (6)

with the associated (to lowest, i.e., quadratic, order) “energy”:

E = a
3

{

−
3

2
ã2u

2
− 3a0H

2
− 6ã3x

2
− 3uHã2

+6σ̃2x(H − u)−
w6

24
R

2 +
w3

24
X

2
−
µ3

24
RX

}

.
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• The odd parity coupling terms lead to mixing of the even (R, u) and odd

(X,x) dynamical variables; this is especially apparent in (5), (6). We can

see the acceleration is now driven by the odd pseudoscalar curvature.

• To analyze this system we first introduce a new variable combination:

z := a0H +
ã2
2
u− σ̃2x, (7)

which to linear order from (2)–(4) is constant:

ż = a0Ḣ +
ã2
2
u̇− σ̃2ẋ = 0. (8)

This is, to linear order, a zero frequency normal mode.



Late time asymptotical expansion
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• At late times the scale factor a is large. For Λ = 0 the quadratic terms will

dominate, then H , u, x, R, and X should have a a−3/2 fall off. Let

H = Ha−3/2, u = ua−3/2, x = xa−3/2, R = Ra−3/2, X = Xa−3/2,

dropping higher order terms, gives the 6 linear equations with odd parity

coupling:
ȧ = a−1/2H, Ḣ =

1

6a2
[ã2R− 2σ̃2X],

ẋ = −
X

6
, u̇ = −

1

3a2
[a0R + σ̃2X],

Ṙ =
6

α
[(w3ã2 − µ3σ̃2)u− 2(w3σ̃2 + µ3ã3)x] ,

Ẋ =
6

α
[(2w6σ̃2 +

1

2
µ3ã2)u+ (4w6ã3 − µ3σ̃2)x],

plus the energy constraint

−a3κρ =
3ã2
2

(H−u)2−
3

2
a2H

2+6σ̃2x(H−u)−6ã3x
2+

w3

24
X2−

w6

24
R2.



Linearized vs. late time evolution
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Hubble function H , “constant mode” z, scalar curvature R, pseudoscalar curvature X ,
scalar torsion u and pseudoscalar torsion, x. The blue (solid) lines represent the
rescaled late time evolution and the red (dashed) lines represent the linear
approximation evolution.



The effect of odd coupling parameters (I):
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(I)The effect of the cross coupling odd parity parameters σ2 and µ3. The red (dashed)

line represents the evolution with the parameter σ2 activated. The blue (doted) line

represents the evolution including both pseudoscalar parameters σ2 and µ3.



The effect of odd coupling parameters (II):
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(II)The effect of the cross odd parity parameters σ2 and µ3. In the first line we compare

the scalar curvature, R and the pseudoscalar curvature, X in different situations. In

the second line we compare the torsion, u and the axial torsion, x. The first column is

the evolution with vanishing pseudoscalar parameters, σ2 and µ3, the second column,

with parameter σ2, the third column, with both pseudoscalar parameters, σ2 and µ3.



Typical time evolution for case I:
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case a2 a3 w6 w3 σ2 µ3 u(1) x(1) R(1) X(1)

I -0.845 -0.45 -1.2 0.081 0.097 -0.43 -0.3349 0.365 2.144 4.9
II -0.905 -0.35 -1.1 0.091 0.097 -0.068 -0.3349 0.378 2.164 2.21

0 1 2 3 4 5
0

50

100

150

a

TIME/T0

0 1 2 3 4 5
0.0

0.5

1.0

1.5

H

TIME/T0

0 1 2 3 4 5

- 40

- 20

0

20

a

TIME/T0

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

ρ

TIME/T0

0 1 2 3 4 5

- 0.4

- 0.2

0.0

0.2

0.4

u

x

TIME/T0

0 1 2 3 4 5
- 5

0

5

10

15

20

R

X

TIME/T0

The full evolution. Shown are the expansion factor a, the Hubble function, H , the 2nd

time derivative of the expansion factor, ä, the energy densities, ρ, the scalar and the

pseudoscalar torsion components, u and x, the affine scalar curvature and the

pseudoscalar curvature, R, X with the parameter choice and the initial data for Case I.



3D Phase Diagram for case I
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The two figures are for the phase diagrams for Case I. The left 3D diagram of (x, u, a) is shown

in this panel. The (red) solid line is the trajectory of the (x, u, a) evolution starting from the initial

value (0.365, −0.3349, 50). The (gray) doted line is the convergence line (0, 0, a) for this

diagram. The right 3D diagram of (u, H , R) and of (x, H , X) are shown in this panel. The i

(red) line is the trajectory of the (u, H , R) evolution starting from the initial value (−0.3349, 1,

2.144), the ii (blue) line is the trajectory of the (x, H , X) evolution starting from the initial value

(0.365, 1, 4.9) and the (filled) black point marks the asymptotic focus point (0, 0, 0).



Summary
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• Here we have considered the dynamics of the BHN model in the context of

manifestly homogeneous and isotropic Bianchi I and IX cosmological
models.

• The BHN cosmological model system of ODEs resemble those of a particle

with 3 degrees of freedom. Imposing the homogeneous-isotropic Bianchi
I and IX symmetry into the BHN PG theory Lagrangian density, the

evolution equations can be obtained directly from a variational principle.
The Hamilton equations can be obtained also.

• Imposing symmetries and variations do not commute in general. However,

for GR they are known to commute for all Bianchi class A cosmologies .

We verify this for our models for isotropic Bianchi I and IX. Our isotopic

Bianchi I and IX models are both class A. They correspond to the FLRW

k = 0 and k = +1 models. The FLRW k = −1 model can be represented
by Bianchi V or VII models, however the representation cannot be manifestly

isotropic. One can of course get the FLRW k = −1 dynamical equations

from our dynamical equations just by simply replacing ζ2 with −1.
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• The system of first order equations obtained from an effective Lagrangian

was linearized , the normal modes were identified, and it was shown
analytically how they control the late time asymptotics .

• The analysis of the equations confirms certain expected effects of the

pseudoscalar coupling constants—which provide a direct interaction

between the even and odd parity modes. In these models, at late times the

acceleration oscillates. It can be positive at the present time.
• As far as we know the scalar torsion mode does not directly couple to any

known form of matter, but we noted that it does couple directly to the
Hubble expansion , and thus it can directly influence the acceleration of the

universe. On the other hand, the pseudoscalar torsion couples directly to

fundamental fermions; with the newly introduced pseudoscalar coupling

constants it too can directly influence the cosmic acceleration.
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