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Hamiltonian and quasi-local quantities

• Action S =
∫

M L, (M , g) is a spacetime
manifold with metric g .

• First order Lagrangian 4-form for a k-form field
ϕ is L = dϕ ∧ p − Λ(ϕ, p)

• The variation of L
δL = d(δϕ ∧ p) + δϕ ∧ δL

δϕ
+

δL
δp

∧ δp. (1)

• Define the Euler-Lagrange equations by
Hamilton’s principle

(E .L.p)
δL
δp

:= dϕ− ∂pΛ = 0, (2)

(E .L.ϕ)
δL
δϕ

:= −ςdp − ∂ϕΛ = 0, ς := (−1)k . (3)
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Hamiltonian and quasi-local quantities

• By the diffeomorphism invariant requirement
(implies LN → δ)

dιNL = LNL = d(LNϕ ∧ p) + LNϕ ∧ δL
δϕ

+
δL
δp

∧ LNp,

LNϕ ∧ δL
δϕ

+
δL
δp

∧ LNp + d(LNϕ ∧ p − ιNL︸ ︷︷ ︸) ≡ 0. (4)

H

(Apply Cartan formula: LN = dιN + ιNd)
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• Hamiltonian is defined on the spatial
hypersurface by

H(N) =

∫

Σ

H =

∫

Σ

(NµHµ + dB), (5)

where

NµHµ = ιNϕ ∧ (E .L.ϕ) + (E .L.p) ∧ ιNp,

B(N) = ιNϕ ∧ p

We obtain NµHµ = ιNϕ ∧ (E .L.ϕ) + (E .L.p) ∧ ιNp,
which vanishes on shell. Consequently,

H(N) =

∮

∂Σ

B(N). (6)
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• Conserved quasilocal quantities and the
corresponding symmetries

1. Quasilocal quantity H : the Hamiltonian boundary
term B integrated over a closed space-like
2−surface.

2. Conservation and symmetries

conserved quantity H ↔ invariant under N

energy time-like

momentum space-like

angular mumentum rotation

center of mass boost
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• Boundary Variation principle
From the variation of the Hamiltonian:

δH =

∫

Σ

δH =

∫

Σ

(· · · ) +

∮

∂Σ

C.

δH = −δϕ ∧ LNp + LNϕ ∧ δp − ιN[δϕ ∧ (E .L.ϕ) + (E .L.p) ∧ δp]

+d[ιN(δϕ ∧ p)]

= −δϕ ∧ LNp + LNϕ ∧ δp + d[ιN(δϕ ∧ p)] “on shell”

If
∮

∂Σ C =
∮

∂Σ ιN(δϕ ∧ p) vanishes, then the
Hamiltonian is functional differentiable such
that the Hamilton equations can be written

LNϕ =
δH
δp

, LNp = −δH
δϕ
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• Boundary condition comes from
∮

∂Σ

C =

∮

∂Σ

ιN(δϕ ∧ p) = 0,

which means C = ιN(δϕ ∧ p) vanishes on the
closed 2−surface ∂Σ.

Note that if the 3−region Σ is compact without

boundary, then
∮

∂Σ
B of the Hamiltonian is

automatically vanishing, which implies the Hamiltonian

is certainly well-defined (i.e. functionally differentiabe).

But we are usually interested in the region which is

asymptotically flat (R3 is non compact), so we need the

boundary conditions.
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• C.M. Chen’s improved boundary terms
With ∆α := α− ᾱ, replace the natural boundary term
ιNϕ ∧ p by

B(N) = ιN

{
ϕ
ϕ̄

}
∧∆p − ς∆ϕ ∧ ιN

{
p
p̄

}
(7)

the associated Hamiltonian variation boundary term has
a symplectic form

δH(N) ∼ d

[{
ιNδϕ ∧∆p

−ιN∆ϕ ∧ δp

}
+ ς

{−∆ϕ ∧ ιNδp

δϕ ∧ ιN∆p

}]
. (8)

[Chen, Nester, Tung, PRD 72, 104020, (21)-(24)]
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Regge-Teitelboim like asymptotic fall off and parity
conditions:

∆ϕ ∼ O+(r−1) +O−(r−2), (9)

∆p ∼ O−(r−2) +O+(r−3), (10)

with Nµ = Nµ
0 + λµ

0 νx
ν , where Nµ

0 , λµν
0 = λ

[µν]
0 are

constant up to O+(r−1), being asymptotically Killing,

the quasi-local quantities have finite values, and the

boundary term in the Hamiltonian vanishes

asymptotically.
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• Each distinct choice of Hamiltonian boundary
quasi-local expression is associated with a
physically distinct boundary condition.

• In order to accommodate suitable boundary
conditions one must, in general, introduce
certain reference values p̄, ϕ̄, which represent
the ground state of the field—the “vacuum”
(or background field) values.
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Application to General Relativity

• Lagrangian density is

L[g, ∂g] = Rη,

where η is the 4-D volume element√−gdx0 ∧ dx1 ∧ dx2 ∧ dx3. In the differential form

language and using the orthonormal frame basis rather

then the coordinate basis

L[ϑµ, Γµ
ν] = Rα

β ∧ ηα
β, (11)

where Rα
β = dΓα

β + Γα
λ ∧ Γλ

β is the curvature

two-form, and ηα
β = 1

2
hβλεαλµνϑ

µ ∧ ϑν is the dual basis

two-form, hµν is the flat metric diag(−1, +1, +1, +1).
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Field variables are ϑα ↔ g and Γµ
ν ↔ ∂g. Recall the

first order Lagrangian L = dϕ ∧ p − Λ implies

L = DΓµ
ν ∧ ρµ

ν + Dϑα ∧ τα − V µ
ν ∧ (ρµ

ν − 1

2κ
ηµ

ν),

where τα, ρµ
ν are conjugate momenta w.r.t ϑα and Γµ

ν ;
V µ

ν is the role multiplier.(Note that τα = 0 as the
construction go back to the original Lagrangian.)

δρµ
ν : DΓµ

ν = Rα
β = V µ

ν ;

δτα : Dϑα = 0 (torsion free);

δV µ
ν : ρµ

ν =
1

2κ
ηµ

ν ,

δϑα : Dτα = Rα
β ∧ ηα

β
µ = Gµ (Einstein three form);

δΓµ
ν : Dρµ

ν = Dηµ
ν = 0 (followed by torsion free).
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Preferred Boundary Term for GR

Chen, Nester, Tung, Phys Lett A 203, 5 (1995)
[also found by Katz, Bičák & Lynden-Bel]

B(N) =
1

2κ
(∆Γα

β ∧ ιnηα
β + D̄βN

α∆ηα
β)

It corresponds to holding the metric fixed on the
boundary:

δH(N) ∼ diN(∆Γα
β ∧ δηα

β) (12)
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The choice of reference

Given a spacetime manifold (M , g), and pick a local
coordinate system {xµ}. The corresponding
physical variables are the metric gµν and the
connection (Christoffel symbol) Γµ

νλ.

• Take a closed space-like two surface S
• Define the reference variables

1. The reference metric ḡ, and
2. the reference connection Γ̄ (note that it is not

unique)

• Then the quasi-local expression is covariant.
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The strategy of choosing reference

1. Directly defined from the physical variables:
e.g. for Kerr case here, let m = a = 0

ḡ := g(m = a = 0); Γ̄ := Γ(m = a = 0).(13)

2. Determined by the local transformation only on
S.(For the spherical symmetric case, see [Phys.Lett.A 374 3599

(arXiv:0909.2754), and PRD 84 084047 (arXiv:1109.4738)])

ḡ := ḡabdy ady b; Γ̄ = 0, (14)

ḡµν = ḡab
∂y a

∂xµ

∂y b

∂xν
; Γ̄µ

ν = −d

(
∂xµ

∂y a

)
∂y a

∂xν
.
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Kerr space

ds2 = −∆− a2 sin2 θ

ρ2
dt2 +

4mar sin2 θ

ρ2
dtdφ

+
sin2 θ

ρ2

[(
r 2 + a2

)2 − a2∆ sin2 θ
]
dφ2

+
ρ2

∆
dr 2 + ρ2dθ2, (15)

where ∆ = r 2 + a2 − 2mr , ρ2 = r 2 + a2 cos2 θ.
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Quasi-local energy for N = ∂
∂t

Using the strategy 1, for the constant t, r surface,
the choice N = ∂t for the quasi-local energy is

E =
3a4 + 3r 3(r − 2m) + a2r(5r − 6m)

6r(a2 + r(r − 2m))

−[a2 + r(r − 2m)]2 arctan(a
r )

2a(a2 + r(r − 2m))
. (16)
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This is the exact value depending on m, a and r .
For r →∞, it is the ADM energy

lim
r→∞

E (∂t) = m, (17)

and for a = 0 one gets the result of Schwarzschild
spacetime

ESch = m. (18)
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Quasi-local energy for the extremal case
a = m

Let r = km for non-negative real constant k, then
the quasi-local energy becomes

E =
3− 6k + 5k2 − 6k3 + 3k4

6k(k − 1)2
m − tan−1 (1/k)

2
m.(19)

Note that it is linear in m.



Hamiltonian and quasi-local quantities Application to General Relativity The choice of reference Kerr space Quasi-local energy for the extremal Kerr Reference

Plot E = 3−6k+5k2−6k3+3k4

6k(k−1)2 − tan−1 (1/k)
2 for m = 1:
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k
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Figure: extremal Kerr quasi-local energy

The event horizon is at k = 1 and two roots appear
at k ≈ 0.67 and k ≈ 1.5.
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Quasi-local angular momentum for N = ∂
∂φ

N = ∂φ for the quasi-local angular momentum is

E = am. (20)
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Boost transformation in t − r plane

Consider a new time coordinate τ such that
dτ = dt + f (r)dr . Let the Kerr metric

ds2 = Fdt2 + 2Gdtdφ + Hdφ2 + Rdr 2 + ρdφ2

= Fdτ 2 + 2Ff dτdr + 2Gdτdφ + 2Gf drdφ

+(Ff 2 + R)dr 2 + ρdθ2 + Hdφ2.

Boundary expression for N = ∂/∂τ(= ∂t)

2κB = [
√−g(gβ2∆Γ1

β2 + gβ3∆Γ1
β3 − gβ1∆Γ2

β2 − gβ1∆Γ3
β3)

+Γ̄0
β0∆(

√−ggβ1)− Γ̄1
β0∆(

√−ggβ0)]dθ ∧ dφ.
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g =




F Ff 0 G
Ff Ff 2 + R 0 Gf
0 0 Σ 0
G Gf 0 H


 ,

g−1 =




f 2

R + H
K − f

R 0 −G
K

− f
R

1
R 0 0

0 0 1
Σ 0

−G
K 0 0 F

K


 .
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Γ1
03 = − Gr

2R
, Γ1

22 = −Σr

2R
, Γ1

33 = −Hr

2R
, Γ2

02 = 0,

Γ2
12 =

Σr

2Σ
, Γ3

03 = 0, Γ3
13 =

FHr − GGr

2(FH − G 2)
,

Γ0
00 =

fFr

2R
, Γ0

10 =
f 2Fr (FH − G 2) + R(FrH − GGr )

2R(FH − G 2)
,

Γ1
00 = − Fr

2R
, Γ1

10 = − fFr

2R
, Γ1

30 = − Gr

2R
.

⇒ E (∂τ) is independent of f (r).
The angular momentum is also invariant under the
boost transformation dτ = dt + f (r)dr .
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Remark

1. Note that under the boost transformation
dτ = dt + f (r)dr , the choice of displacement
N = ∂τ is invariant. Let new coordinate is
{τ, R} and old one is {t, r}. Under the
transformation

dτ = dt + f (r)dr , dR = dr ,

which implies ∂τ = ∂t , ∂R = −f (r)∂t + ∂r .

2. This kind of boost transformation includes the
Eddington-Finkelstein and Painlevé-Gullstrand
coordinates.
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Remark

3. The quasi-local angular momentum is a
constant E (∂φ) = am for N = ∂φ, which is
independent of the boost transformation.
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2κB = ∆Γα
β3

√−ggβγεαγ32dx3 ∧ dx2

+Γ̄α
β3∆(

√−ggβγ)εαγ23dθ ∧ dφ

=
√−g(g 11∆Γ0

13 + g 01∆Γ0
03 − g 00∆Γ1

03

−g 10∆Γ1
13 − g 30∆Γ1

33)dθ ∧ dφ

+[Γ̄0
13(∆

√−gg 11)− Γ̄1
03(∆

√−gg 00)− Γ̄1
33(∆

√−gg 30)

+Γ̄0
03(∆

√−gg 01)− Γ̄1
13(∆

√−gg 10)]dθ ∧ dφ.

Here the only contributed connection terms are

Γ0
13 =

f 2Gr

2R
+

HGr − GHr

2K
, Γ1

03 = − Gr

2R
, Γ1

33 = −Hr

2R

Γ0
03 =

fGr

2R
, Γ1

13 = − fGr

2R
, Γ̄1

33 = −r sin2 θ.

First term :
√−g

[
(HGr − GHr )/KR + Gr sin2 θ/K

]
dθ ∧ dφ,

Second term : −√−gGr sin2 θ/Kdθ ∧ dφ.
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