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Hamiltonian and quasi-local quantities

e Action S = [, L, (M, g) is a spacetime
manifold with metric g.
e First order Lagrangian 4-form for a k-form field
pis L=dp Ap—Np,p)
e The variation of £
5£:d(5g0/\p)+(5go/\%+%/\5p. (1)

e Define the Euler-Lagrange equations by
Hamilton's principle

5L
6L
(E.L,) — :=—cdp—,N=0, ¢ :=(—1)*.(3)

dep

energy fd
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Hamiltonian and quasi-local quantities

e By the diffeomorphism invariant requirement
(implies Ly — 6)

oL oL
dinL = LnL =d(Lne A p) + Lnp A — + — A Lnp,
dp  dp
oL oL
L —+ =L L — =0. (4
N A SS T, Nnetd(ne Ap — inE) =0 (4)

H

(Apply Cartan formula: Ly = diy + ¢tnd)
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Hamiltonian and quasi-local quantities

e Hamiltonian is defined on the spatial
hypersurface by

H(N):LH:/Z(N“H#MB), (5)

where

NtH, = e A (E.L,) + (E.Lp) A np,
B(N) =np Ap

We obtain N*H,, = tne A (E.L.,) + (E.L,) A inp,
which vanishes on shell. Consequently,



Hamiltonian and quasi-local quantities

e Conserved quasilocal quantities and the
corresponding symmetries
1. Quasilocal quantity H: the Hamiltonian boundary
term B integrated over a closed space-like
2—surface.
2. Conservation and symmetries

conserved quantity H < invariant under N

energy time-like
momentum space-like
angular mumentum rotation

center of mass boost



Hamiltonian and quasi-local quantities

e Boundary Variation principle
From the variation of the Hamiltonian:

= [om= [ ()= ¢

0H = —dpALnp+ Lup Adp—en[dp A (E.L.,) + (E.Lp) Adp]
+d[en(de A p)]
= —0pALnp+ Lnp Adp+din(dp A p)] “on shell”

If $,5 C = $,x tn(dp A p) vanishes, then the
Hamiltonian is functional differentiable such
that the Hamilton equations can be written



Hamiltonian and quasi-local quantities

e Boundary condition comes from

}I{C:f in(dp A p) =0,
o% oY

which means C = in(dp A p) vanishes on the
closed 2—surface 0%.

Note that if the 3—region ¥ is compact without
boundary, then fazB of the Hamiltonian is
automatically vanishing, which implies the Hamiltonian
is certainly well-defined (i.e. functionally differentiabe).
But we are usually interested in the region which is
asymptotically flat (R3 is non compact), so we need the
boundary conditions.



Hamiltonian and quasi-local quantities

e C.M. Chen's improved boundary terms
With Aa := a — &, replace the natural boundary term

inp A p by

B(N)me{g}/\Ap—cmpMN{g} (7)

the associated Hamiltonian variation boundary term has
a symplectic form

SH(N) ~ d H iNO@ N AP }+<{‘A¢M”5PH (8

—inAp A dp dp AN inAp

[Chen, Nester, Tung, PRD 72, 104020, (21)-(24)]



Hamiltonian and quasi-local quantities

Regge-Teitelboim like asymptotic fall off and parity
conditions:

Ap ~ OF(r ) +07(r?), (9)
Ap ~ O (r3)+0"(r?), (10)

with N® = NE + AX,x”, where NE, AL = Ak are
constant up to O*(r71), being asymptotically Killing,
the quasi-local quantities have finite values, and the
boundary term in the Hamiltonian vanishes

asymptotically.



Hamiltonian and quasi-local quantities

e Each distinct choice of Hamiltonian boundary
quasi-local expression is associated with a
physically distinct boundary condition.

e In order to accommodate suitable boundary
conditions one must, in general, introduce
certain reference values p, ¢, which represent
the ground state of the field—the “vacuum”
(or background field) values.
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Application to General Relativity
e Lagrangian density is

L[g, 0g] = Ry,

where 7 is the 4-D volume element

V—gdx? Adx! Adx? A dx3. In the differential form
language and using the orthonormal frame basis rather
then the coordinate basis

L") = R% A, (11)

where R = dl*5 + [, AT?j is the curvature
two-form, and 7,7 = A€, 0" A 9 is the dual basis
two-form, h* is the flat metric diag(—1, +1,+1, +1).



Application to General Relativity

Field variables are ¥* < g and I'*, < 0g. Recall the
first order Lagrangian £ = dp A p — A implies

1
L=DI", Ap) +DI*AN1o — V') Ap, — ﬂm”),

where 7,, p,” are conjugate momenta w.r.t ¥ and I'*,;
V¥, is the role multiplier.(Note that 7, = 0 as the
construction go back to the original Lagrangian.)

op,  + DIty = R = V¥,
07 © DU = 0 (torsion free);
v 1 v
ovE, Pu = %nu )
§9*: D1, = R*3 An.”, = G, (Einstein three form);
or*, : Dp,” = Dn,” = 0 (followed by torsion free).



Preferred Boundary Term for GR

Chen, Nester, Tung, Phys Lett A 203, 5 (1995)
[also found by Katz, Bi¢dk & Lynden-Bel]

1 _
B(N) = %(Araﬁ A 1o + DgN“An,”)

It corresponds to holding the metric fixed on the
boundary:

SH(N) ~ diny(ATs A 51,7) (12)
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The choice of reference

The choice of reference

Given a spacetime manifold (M, g), and pick a local
coordinate system {x*}. The corresponding
physical variables are the metric g, and the
connection (Christoffel symbol) '*, .

e Take a closed space-like two surface S
e Define the reference variables

1. The reference metric g, and
2. the reference connection ' (note that it is not
unique)

e Then the quasi-local expression is covariant.



The choice of reference

The strategy of choosing reference

1. Directly defined from the physical variables:
e.g. for Kerr case here, let m=a=0

g =g(m=a=0); T:=T(m=a=0).(13)

2. Determined by the local transformation only on
S.(For the spherical symmetric case, see [Phys.Lett.A 374 3599
(arXiv:0909.2754), and PRD 84 084047 (arXiv:1109.4738)])

g = gabdyadyb; r=o, (14)

_ %Gyb_ P g Ox*\ Oy?
guu — gabaxﬂ 8XV' [ aya (9XV'
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Kerr space

A — 2%sin’ 0 Amar sin® 0

@ : de2 + _ dtdo
; p
in2 0
sm2 [(rz n 32)2 — a°Assin? 9} do?
0
pe
A+ o, 19)

where A = r? 4+ a2 — 2mr, p? = r? 4+ a® cos? 0.



92

Quasi-local energy for N = 5

Using the strategy 1, for the constant t, r surface,
the choice N = 0; for the quasi-local energy is

3a* +3r3(r — 2m) + a°r(5r — 6m)
6r(a>+ r(r —2m))
~ [a* + r(r — 2m)]*arctan(?)
2a(a% + r(r — 2m))

E =

(16)
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This is the exact value depending on m, a and r.
For r — oo, it is the ADM energy

lim E(0:) = m, (17)

r—oo

and for a = 0 one gets the result of Schwarzschild
spacetime

Esn = m. (18)
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Quasi-local energy for the extremal case
a=m

Let r = km for non-negative real constant k, then
the quasi-local energy becomes

. 2 13 4 -1
_ 3 6k+5K —6k>+3K*  tan (1/k)n¢19)

E
6k(k — 1) 2

Note that it is linear in m.



Quasi-local energy fc

_ 3—6k+5k2—6k34+3k*  tan"'(1/k) .
Plot E = 6k (k—1)? 5 for m = 1:
QLE
4,
2,
‘ | e
05 1.0 15 20 25 3.0

_4at

Figure: extremal Kerr quasi-local energy

The event horizon is at k = 1 and two roots appear
at k = 0.67 and k ~ 1.5.
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Quasi-local angular momentum for N = (%

N = 0, for the quasi-local angular momentum is

E = am. (20)



Boost transformation in t — r plane

Consider a new time coordinate 7 such that
dr =dt + f(r)dr. Let the Kerr metric

ds*> = Fdt* 4+ 2Gdtd¢ + Hdp? + Rdr? + pd¢?
Fdr? + 2Ffdrdr + 2Gdrdp + 2Gfdrde
+(Ff? + R)dr? + pd6? + Hdp*.

Boundary expression for N = 0/0,(= 0;)

258 = [V_—g(gﬁzArlﬁz + gﬁfArlﬁs - gﬁlArzﬁz - gﬁlAr3ﬁ3)
+0%0A(vV—gg"") — T o A(vV—gg™)]db A d.
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rr space Quasi-local energy fc

?

e S N = SR AR =
03 2R7 22 2R7 33 2R7 02 )
> FH, — GG,
2 — r r3 — r3 — r r
r 12 227 03 07 13 2(FH— GZ)’
Moo=755 T10= 5
2R 2R(FH — G?)
F, fF, G,
I_100: _ﬁa I_ll(): _§7 I_130:_§-

= E(0;) is independent of f(r).

The angular momentum is also invariant under the
boost transformation d7 = dt + f(r)dr.



Remark

1. Note that under the boost transformation
dr = dt + f(r)dr, the choice of displacement
N = O, is invariant. Let new coordinate is
{7, R} and old one is {t, r}. Under the
transformation

dr =dt+ f(r)dr, dR =dr,

which implies |0, = 0;|, Or = —f(r)0; + O,.

2. This kind of boost transformation includes the
Eddington-Finkelstein and Painlevé-Gullstrand
coordinates.

energy fc



Quasi-local energy fc

Remark

3. The quasi-local angular momentum is a
constant E(9,;) = am for N = 0y, which is
independent of the boost transformation.



Quasi-local energy fc

2B = Araﬁg,\/—_ggmeaﬁgdx‘?’ A dx?
+T 53 A(v/ =887 )€ara3dd A do
=V g(g" AT + g A% — g% ATy,
—gl%Alt 3 — g3°Arts3)dd A do
+[r013(A\/—_ggll) - r103(A\/_—ggoo) - r133(A\/—_gg30)
+0%;3(AV—gg™) — T 13(AV—gg'%)]do A do.
Here the only contributed connection terms are

G HG, — GH G H
ro _ r r r r1 __ r1 _
13 R + K ) 03 SR’ 33 SR
f f
M = _G, L= G My = —rsin?é.

2R7 13 _2Ra

First term : /=g [(HG, — GH,)/KR + Grsin®0/K] df A dg,
Second term : —+/—gGrsin?6/Kdd A do.
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