De Sitter solutions in warped compactifications

Masato Minamitsuji
(Kyoto Univ.)
With Kunihito Uzawa (Kindai Univ.)
Accelerating solutions play the important roles in recent cosmology.

Inflation

✓ explaining the flatness, homogeneity and isotropy of the universe

✓ generating seed of cosmic structures.

Dark Energy

✓ 72% of the present cosmic energy, assuming GR is hold on all distance scales.

✓ Modified gravity?
Superstring/ M-theory suggests that our universe is higher-dimensional.

In context of the higher-dimensional gravity, much attention has been paid to *compactifications to de Sitter or accelerating universe*, since it could provide a fairly direct explanation of these issues.

An initial clue was the time-dependence of a hyperbolic internal space.

Townsend & Wohlfarth (03), Ohta (03)

\[V_{\text{eff}} \approx -R_H > 0 \]

Emparan & Garriga (03)

“Size of internal space”
Since many familiar solutions in the higher-dimensional gravity such as brane solutions have warped structures, it is very interesting to look for the embedding 4D de Sitter universe into the warped spacetime.

\[
\begin{aligned}
&d s_D^2 = A(y)^2 \left(-dt^2 + e^{2Ht} \delta_{ij} dx^i dx^j \right) + \omega_{ab}(Y) dy^a dy^b \\
\text{Warp factor} & \\
\text{n-dimensional de Sitter spacetime} &
\end{aligned}
\]

Among the warped solutions, the time-dependent generalizations of static p-branes could not provide accelerating solutions.

Gibbons, Lu & Pope (05), Maeda, Ohta & Uzawa (09), 1007.1762, 1011.2376, 1109.1415

We have started to find more explicit warped de Sitter solutions.
De Sitter solutions

\[
L = \frac{1}{2\kappa^2} \sqrt{-g} \left(R - \frac{1}{2} (\partial \phi)^2 - \sum_I \frac{1}{2 \cdot p_I!} e^{c_I \phi} F_{(p_I)}^2 \right)
\]

gravity scalar form field strengths

We have to evade the NO-GO restrictions for de Sitter compactifications. Gibbons (84) Maldacena & Nunez (00)

- Introducing an infinite extra dimension
 1103.5326 Gibbons & Hull (01), Neupane (10)

- Introducing 0-form field strength
 1109.4818, 1110.2843
A warped product of an infinite direction, sphere and de Sitter universe.

\[ds_D^2 = e^{2A(y)} \left[q_{\mu\nu}(X)dx^\mu dx^\nu + dy^2 + u_{ab}(Z)dz^a dz^b \right] \]

- n-dim external space
- Infinite
- (D-n-1)-dim compact space

Since the bulk volume diverges, now we construct the cosmological brane world model through the cut-and-paste method.

Randall & Sundrum 99
\[ds_D^2 = e^{2A(y)} \left(q_{\mu\nu}(X) dx^\mu dx^\nu + dy^2 + u_{ab}(Z) dz^a dz^b \right) \]

n-dimensional spacetime

\[\phi(y) = -\frac{2(D-n-2)}{c_{D-n-1}} A(y) \]

Infinite \((D-n-1) \)-dimensional Einstein space

Solution

\[A(y) = \pm \frac{c_{D-n-1} f}{2} \sqrt{\frac{1}{(D-n-2)(D-2)} (y - y_0)} \]

\[R_{\mu\nu}(X) = \frac{f^2}{4} \left(\frac{c_{D-n-1}^2}{D-n-2} - \frac{2(D-n-2)}{D-2} \right) q_{\mu\nu}(X) \]

\[R_{ab}(Z) = \frac{f^2}{4} \left[\left(\frac{c_{D-n-1}^2}{D-n-2} - \frac{2(D-n-2)}{D-2} \right) + 2 \right] u_{ab}(Z) \]
X becomes de Sitter for

\[c_{D-n-1}^2 > \frac{2(D-n-2)^2}{D-2} \]

Z must be a sphere for de Sitter solutions.

IIA supergravity allows for 7D de Sitter spacetime

\[n = 7 \quad c_2^2 = \frac{3}{2} > \frac{1}{2} \]

No Kaluza-Klein excitations lighter than Hubble scale.

Physics on the brane is free from the light KK excitations.
Warped de Sitter compactification

\[D = n + 1 + \sum_{I} L_{I} \]

\[d s_{D}^{2} = e^{2A(\theta)} \left[q_{\mu\nu}(X) d x^{\mu} d x^{\nu} + d \theta^{2} + \sum_{I} u_{a_{I}b_{I}}(Z_{I}) d z^{a_{I}} d z^{b_{I}} \right] \]

\(n \)-dim external spacetime

A product of compact spaces

\[F_{(n)} = f_{n} \Omega(X) \]

\[F_{(0)} = m \quad 0\text{-form} \]

\[\phi = -\frac{2}{c_{0}} A \]

We choose coupling constants

\[c_{n} = (-n + 1)c_{0} \quad c_{I} = (-L_{I} + 1)c_{0} \]

\[c_{0}^{2} = \frac{2}{(D - 1)(D - 2)} \]
\[A = A_0 \left[\cos(\bar{\theta} - \bar{\theta}_0) \right]^{\frac{1}{D-2}} \]

\[R_{\mu\nu}(X) = \frac{1}{2} \left(- f_n^2 + \frac{K + m^2}{D-1} \right) q_{\mu\nu}(X) \]

\[K = (n-1)f_n^2 - \sum_I (L_I - 1)\ell_I^2 \]

\[R_{ab}(Z_I) = \frac{1}{2} \left(\ell_I^2 + \frac{K + m^2}{D-1} \right) u_{ab}(Z_I) \]

- \(X \) becomes de Sitter \(m^2 > (D-n)f_n^2 + \sum_I (L_I - 1)\ell_I^2 \)
 - 0-form is necessary

- \(Z_I \) must be a sphere for de Sitter solutions.

\[dS_n \times S^1 \times \prod_I S^{L_I} \]

- No de Sitter solution in the massive IIA supergravity with 0-form.

\[c_0^2 = N_0 + \frac{9}{4} \quad N_0 = -\frac{20}{9} \neq 4 \]

Supergravity solutions only admit AdS without the 0-form.
Summary

We have introduced our recent trials to find the warped de Sitter solutions in the higher-dimensional gravitational theory.

- **Warped de Sitter noncompactifications**
 - Infinite extra dimension evades the NO-GO restriction
 - Cosmology is realized at the boundary brane world.

- **Warped de Sitter spacetime compactifications**
 - The 0-form can evade the NO-GO restrictions.
Thank you
NO-GO theorem
Gibbons (84) Maldacena & Nunez (00)

Under assumptions

1) There is no higher curvature /derivative correction in gravity action.
 \[R + \alpha R^2 \]
 higher-dimensional general relativity

2) All massless fields have kinetic terms with correct sign.
 \[- (\partial \phi)^2 - F_{A_1 \ldots A_p} F^{A_1 \ldots A_p} \]

3) The scalar potential /cosmological constant is non-positive
 \[V \leq 0 \]

4) The internal space is compact with a finite volume and no boundary.

⇒ De Sitter solutions are forbidden.
Outline of proof:

a) X is a spatially flat universe
\[ds^2(X) = -dt^2 + t^{2\lambda} \delta_{ij} dx^i dx^j \]
\[R(X) = 12 \lambda \left(\lambda - \frac{1}{2} \right) t^{-2} > 0 \]
for any accelerating universe \(\lambda > 1 \)

b) Einstein gravity coupled to matter \(\Rightarrow 1) \)
\[A^{2(D-2)}(R(X) + A^2 \overline{T}) = \frac{4}{D-2} A^{D-2} \Delta Y A^{D-2} \]
\[\overline{T} := -T^\mu_\mu + \frac{4}{D-2} T \]

c) Assuming that Y space is compact, integrating Einstein eq. by parts \(\Rightarrow 4) \)
\[\int_Y d^{D-4} y \sqrt{u} A^{2(D-2)} \left[R(X) + A^2 \overline{T} \right] = \frac{4}{D-2} \int_Y d^{D-4} y \sqrt{u} A^{D-2} \Delta Y A^{D-2} \]
\[= - \frac{4}{D-2} \int_Y d^{D-4} y \sqrt{u} \left(u^{ab} \partial_a A^{D-2} \partial_b A^{D-2} \right) < 0 \]
de Sitter /accelerating solution can be obtained if \(\overline{T} < 0 \)
(d) Scalar potential (or cosmological constant) \(\Rightarrow \) 3)

\[
T_{MN} = -V g_{MN} \quad \longrightarrow \quad \overline{T} = -\frac{8}{D-2} V
\]

\[V \leq 0 \quad \longrightarrow \quad \overline{T} \geq 0 \]

No de Sitter solutions for \(V \leq 0 \)

(e) Massless p-form field strength \(\Rightarrow 2) \)

\[
T_{MN} = \frac{1}{2p!} \left(pF_{MA_2\ldots A_p} F^{A_2\ldots A_p}_N - \frac{1}{2} g_{MN} F^2 \right)
\]

\[\longrightarrow \quad \overline{T} = \frac{1}{2(p-1)!} \left(-F_{\mu A_2\ldots A_p} F^{\mu A_2\ldots A_p} + \frac{4(p-1)}{(D-2)p} F^2 \right) \]

\(\checkmark \) If the field strength has only components along Y-space,

\[\overline{T} = \frac{2}{p(p-2)!(D-2)} F^2 > 0 \]

\(\checkmark \) If it has components only along X-spacetime

\[\overline{T} = -\frac{2(D-p-1)}{(D-2) \cdot p!} F^2 \geq 0 \]

No de Sitter solutions
Evading NO-GO assumptions

➢ adding higher curvature terms ⇒ 1)
 Ishihara (86), Maeda & Ohta (04)
 \[R^2 \times R^4 \]

➢ introducing noncompact extra dimension ⇒ 4)
 • hyperbolic internal space
 Gibbons & Hull (01)
 • Warped product of \(dS_4 \times R \times S^d \) in the pure gravity
 Neupane (10)
 • Warped product of \(dS_4 \times R \times S^d \) with matter fields
 1103.5326

➢ introducing positive energy source ⇒ 3) \(V > 0 \)
 • localized objects in the internal space
 Danielson, Haque, Shiu, & Riet (09) Wrase & Zagermann (10)
 • 0-form field strength
 1109.4818, 1110.2843