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GENERAL DESCRIPTION OF MODIFIED GRAVITY
Cosmic Accelerate

Modified Gravity
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GENERAL DESCRIPTION OF MODIFIED GRAVITY
Cosmic Accelerate

Modified Gravity
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GENERAL DESCRIPTION OF MODIFIED GRAVITY
Cosmic Accelerate

Modified Gravity

ry~Mpc

r B

B Does the Vainshtein mechanism completely hide ¢ ?
M Test of the transition from Modified Gravity regime
B to General Relat|V|ty reglme on halo scales!
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GALILEON-LIKE MODEL

EQUIPPED WITH VAINSHTEIN MECHANISM

|

Including Original Galileon:

Lint X (8¢)2

_ 1 2
X = —5(99)

¢

Self-interaction term leads interesting features.

Cosmic acceleration

Second—order field EOM
Vainshtein mechanism




PERTURBATIONS FOR GRAVITY AND SCALAR FIELD

Newtonian gauge
ds® = —(1 +2W)dt* + a(t)*(1 + 2P)dx?
o(t, ) = o(t)(1 + (x))

Perturbation equations on cluster’ s scales

/\ /\

ECI) — —47TG5,0‘|_€$90 (00)

b+ U= — Traceless

A 2 [ ¥,ij 0" JAN 2

?SO_F)\ ( a2 az <$90 — —47TGC5IO

¢ EOM
v, &, C, A are determined by the background evolution.
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PERTURBATION EQUATION

In spherically symmetric case,

dv — GM(r)
dr 12

Enclosed mass:

M(r) = 47?/0 dr'r"?5p(r")

Assuming the same halo profile as that in GR




VAINSHTEIN MECHANISM

In spherically symmetric case,

dv — GM(r)
dr 12

Vainshtein radius: ry = [SG)\2CM(’I“V)] 1/3




VAINSHTEIN MECHANISM

In spherically symmetric case,

dv — GM(r)
dr 12

Vainshtein radius: ry = [SG)\QCM(T‘V)] 1/3

dv  GM(r)

r Ty T~
dr 72

GR is recovered !




VAINSHTEIN MECHANISM

In spherically symmetric case,

dv — GM(r)
dr 12

Vainshtein radius: ry = [SG)\2CM(T‘V)] 1/3

r << ry CCZZ_\IJ ~ G.Ai(?“) GR is recovered !
(A T
r > ry dW Geﬂ-‘M(T‘) Gravitational force
I = 2 is modified.

where Geff =G
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How can we dc\ate\ct the transition
from Modified‘. Gravity regime
to General Relativity regime ?

IKANATA @Hiroshima by TN]11



Gravntatconal‘ Lens in Galaxy Cluster Abell 1689 @ HUBBLESITE. org
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USING THE THIN-LENS APPROXIMATION,

Convergence which describes magnification

— XL)XL /XS dX/A(QD) (
0

(Xs
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In modified gravity,

Y

Lensing potential

a2
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A\ (\IJ—CI)

2

XS

XS
0
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v — P

)
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OBSERVED SURFACE MASS DENSITY
D9 = dierK

Ss(ry) = / " dz |

Introduction of the spatial coordinate:

r:\/rijLZQ

rp =arxrt Z =ar(x —XxL)

whose origin is located at the center of the lens object.
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PARAMETRIZATION OF MODIFIED GRAVITY

1= (o _|_22§)< - \/Hg)\zg
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PARAMETRIZATION OF MODIFIED GRAVITY
M:(Cv—l—zf)C GZ\/H(%)\QC

2
Physical meaning of U
N (VU —]
r — 00 — ~ 4T Gegop
a? 2

Effective G Gog ~ G(1 + 1)

Yg 2/000 dZp(r)|1 4+ u
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PARAMETRIZATION OF MODIFIED GRAVITY

1= (o _|_22§)< - \/Hg)\zg

Effective G Geog ™ G(l + ,LL)
Vainshtein radius 1/3

8GA My
rv = [SGAQCMvir]l/S — 61_12

My V3 2/31 —1
ry =~ 10 (1015Msun> /3h~"Mpc

In the limit 4 —0 or € —o0,
Newtonian gravity is reproduced on all scales.
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CONSTRAINTS ON MODIFIED GRAVITY WITH
HALO DENSITY PROFILES OBSERVED
HROUGH LENSING [TN & Yamamoto, arXiv:1201.4037]

Surface mass density

2. . measured through

gravitational lensing.
[Umetsu et al. (2011), Oguri et
al. (2012)]

Over a wide range of radius

Small error of the stacked
# Umetsu et al. (2011) data

log r (h~'kpc)
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EFFECTS OF ¢ ON X . AND din X ./dInr

Effective G ;
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As radii becomes large, the amplitude of 2 is enhanced
for positive U, while it is suppressed for negative U .




EFFECTS OF ¢ ON X . AND din X ./dInr

Effective G ;
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EFFECTS OF ¢ ON X . AND din X ./dInr

Effective G ;
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EFFECTS OF ¢ ON X . AND din X ./dInr

Effective G - i ]
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EFFECTS OF € ON X . AND din X ./dinr

_— Vainshtein radius r,
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2. ¢ deviates from GR even at small radii for small &,
while 2 ¢ does from GR only at large radii for large €.
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EFFECTS OF € ON X . AND din X ./dinr

_— Vainshtein radius r,
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EFFECTS OF € ON X . AND din X ./dinr

_— Vainshtein radius r,

[y
(o))

M, =1.5x10"M__/h | e M, =1.5x1015M_ _/h]
Cvir=7'7 B : Cvir=7’7 .

o
o

[y
9]

oA
o)

[a—y
N

N |
)
O,
=

N

c
7
=

e

0
PN
al
O

o
o

(R
w

2 3
log r, (h~kpc)
2. ¢ deviates from GR even at small radii for small &,
while 2 ¢ does from GR only at large radii for large €.

25




CONSTRAINTS ON g —-& FOR NFW WITH 2

X QGalileon
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CONSTRAINTS ON g —-& FOR NFW WITH 2

Original Galileon model is allowed.
Better constraints on ( for small r, (small €)
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SUMMARY & CONCLUSION

4 A
The transition from MG regime to GR regime

*How to appear it on halo ?

9 * Constraints on it characterizing by ¢ and €. y

/A unique test with @—-Y at cluster’ s scales \
The original Galileon model is not excluded.
But our method provides us with a unique
chance to test the gravity theory on halo
scales with cluster surveys, Subaru/HSC,

\CLASH and LoCuSS. /
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Thank you for your attention !



THE COEFFICIENTS IN PERTURBATION EQUATIONS
Gravitational constant: (G = 1/(87‘(‘F(¢))

_& _QXGx—F¢ _2(A1+A2)H Q_BQHgb
Q—ng; g_ 2F Qb, C_ B¢¢ ) )\ - 5X¢7
Fd A, \ 2H?
5_—<A0+A2£+(A1+A2)F2> QAQ.
© ©6 Fyp E+P
Ay = | -2 |
T H2 " H H o 20?7
Fyo © 0°Gx
A =22 Ay=F— =, By=
1 H7 2 H? O 2H 9

£=2XKx — K +6HX¢Gx —2XGy — 3H*F — 3H)F,,
P =K —2X(Gy + ¢Gx) + (B3H* +2H)F + (¢ + 2H)) Fy 4 2X Fyy,
O =—-X¢pGx + HF + ¢pF,/2
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CIRCULAR SPEED FOR NFW NORMALIZED BY v g2

Vainshtein mechanism does not completely hide effect of
modification of gravity in cluster’s scales.

' [TN,Kimura,Yano,Yamamoto,2011
" Galileon (arXiv: 1108.2346)]

- M, ,=101M,

This makes the effect
potentially observable.




CIRCULAR SPEED FOR NFW NORMALIZED BY v g2
A

v (r) = r—

dr

_ [TN,Kimura,Yano,Yamamoto,2011
Galileon (arXiv: 1108.2346)]

Conclusion depends on
cluster’s virial mass.
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