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  Inflation is one of the most promising candidates as 
　　　the generation mechanism of primordial fluctuations. 

  Inflation can be derived by a scalar field. 

  We have hundreds or thousands of inflation models. 
　　→　we have to discriminate those models. 

  CMB : scale invariant spectrum, Gaussian statistics 

   Non-Gaussianity may have the key of this puzzle. 
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  The deviations of CMB from the Gaussian statistics 
　　　is parameterised by the non-linear parameter “fNL” .	
 

 amplitude of 2nd order perturbation 	
 

WMAP 7 : 	
 �10 < f local
NL < 74 PLANCK :	
 

����f local
NL

��� < 5

     There exists a possibility to constrain inflation models by fNL !!	
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      We need to go beyond the linear perturbation theory.	
 



  The evolution of the curvature perturbation R(3) 

 inflation	
 

Horizon exit	
 

CMB	
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  To give a precise theoretical prediction,  
　　we need to solve the evolution of R(3) after horizon exit. 

Newton 
  Potential 

C M B	
 

       We focus on superhorizon dynamics of non-linear perturbations.	
 



  There are several approaches for non-linear pert’s.	
 

1, higher order perturbation  :  most general, lengthy 	
 

2, gradient expansion  :  superhorizon only, 〜 BG Eqs	
 

3, covariant formalism  :  coordinate-free, geometrical	
 

  What is the relation between No.2 and No.3 ?	
 

✓ Equivalence at linear, 2nd and 3rd order	
 
Langlois et al.,  Enqvist et al,.  Lehners et al,.	
 

✓ non-linear equivalence in the Einstein gravity	
 
Suyama et al.	
 



  On large scales, spatial gradient expansion will be valid. 

　　　We expand equations in powers of spatial gradients. 

　　Full non-linear effects are taken into account. 

L � H�1
����iQ

���(� L�1Q) �
����tQ

���(� HQ)

ds2 = ��2dt2 + ⇤̂ij(dx
i + ⇥idt)(dxj + ⇥jdt)

�̂ij = a2(t)e2��ij
   curvature  
 perturbation	
 :� det|�ij | = 1

  We express the metric in the ADM form 

  The spatial metric is further decomposed 



  We define the non-linear e-folding number. 

  　 is given by the difference of “N” 

�N

xi = const.	
 

N	
 

B.G. e-folding number 

� = 0

� = 0
�(tini)

�(tfin)

�N � N �N = �(tfin)� �(tini)

xi = const.	
 

cf. N � Hdt

�       δN formalism	
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  By choosing the slicings ; 

ψ = 0	
 

ρ = const.	
 

initial	
 

final	
 

  Let us consider a perfect fluid : 

Tµ� = (�+ P )uµu� + Pgµ�

uµ��T
µ� = 0

  The energy cons. law gives the evolution eq. for   �

H + �t� = �1

3

�t�

�+ P

�N = ��

       gives the final      on the uniform � ��N

initial : flat  &  final : uniform ρ 



  We define the curvature covector.	
 

�µ � �µN � Ṅ
�̇
�µ� Ṅ � LuN = uµ�µN

  The energy cons. law gives the evolution eq. for        , 

  Notice !! 
　　1, the equation for       is valid at all scales. 
　　2, there is an ambiguity in the choice of the initial slice, 
　　　   since N is defined in terms of the integration.	
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  The relation between “ζμ” in the covariant formalism 
　　and “ψ = δN ” in the δN formalism is unclear.	
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  We choose the initial flat slice as in the δN formalism,	
 

  On the uniform energy density slicing : ρ = ρ (t), 	
 

       This shows that δN formalism = covariant formalism.	
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  We can show the equivalence between two evolution eqs.	
 

  The evolution eq. for         on large scales	
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       This also shows that δN formalism = covariant formalism.	
 



  We have shown that the non-linear equivalence between 

　　 the δN and covariant formalisms on superhorizon scales. 

  In the proof, we have not assumed the gravity theory, 

　　which means the equivalence holds in any gravity theory.	
 





  Let us consider perturbations around the FLRW universe.	
 

 and	
 
Slow-roll	
 

(gravitational redshift)	
 photon	
 

  The Einstein equations　　    the master equation for R	
 

R(3) � �R

R � �N � �T/T
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Rc : R in �� = 0

� � H�1

Rc = const.
  On superhorizon scales                    ,	
 

R�
c � z�2 � a�2

[ds2 = a2(�) � (1 + 2A)d�2 � 2��1/2B,idx
id� +

�
( 1 + 2R )�ij � 2��1C,ij

�
dxidxj ]



  We define the e-folding number, which is the integration 
 　　of the expansion along an integral curve of uμ,	
 

　　where the dot denotes the Lie derivative with respect to uμ, 	
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Ṅ � LuN = uµ�µN �̇µ � Lu�µ = u����µ + ���µu
�

  We define the curvature covector, which is one of the 
　　 most important quantities in the covariant formalism. 	
 



  The energy cons. law gives the evolution eq. for CC, 
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  When the adiabatic condition “P = P (ρ)” is satisfied, 
　　　the RHS vanishes and CC is conserved. 

  Notice !! 
　　1, the above equation is valid at all scales. 
　　2, there is an ambiguity in the choice of the initial slice, 
　　　　 since N is defined in terms of the integration.	
 

N � d� �


