A general proof of the equivalence between δ N and covariant formalisms

Yukawa Institute for Theoretical Physics Atsushi Naruko

Based on : arXiv : 1202.1516

Introduction

 Inflation is one of the most promising candidates as the generation mechanism of primordial fluctuations.

□ Inflation can be derived by a scalar field.

■ We have hundreds or thousands of inflation models.
 → we have to discriminate those models.

□ CMB : scale invariant spectrum, Gaussian statistics

Non-Gaussianity may have the key of this puzzle.

Non-Gaussianity in CMB

The deviations of CMB from the Gaussian statistics is parameterised by the non-linear parameter "f_{NL}".

Outside Horizon

To give a precise theoretical prediction,
 we need to solve the evolution of R⁽³⁾ after horizon exit.
 We focus on superhorizon dynamics of non-linear perturbations.

Non-linear Cosmological Pert's

• There are several approaches for non-linear pert's. 1, higher order perturbation : most general, lengthy 2, gradient expansion : superhorizon only, \sim BG Eqs 3, covariant formalism : coordinate-free, geometrical ■ What is the relation between No.2 and No.3? ✓ Equivalence at linear, 2nd and 3rd order Langlois et al., Enqvist et al,. Lehners et al,. ✓ non-linear equivalence in the Einstein gravity

Suyama et al.

Gradient expansion approach

On large scales, spatial gradient expansion will be valid.
 L ≫ H⁻¹ ⇒ |∂_iQ|(~L⁻¹Q) ≪ |∂_tQ|(~HQ)
 → We expand equations in powers of spatial gradients.
 → Full non-linear effects are taken into account.

 $|\det|\gamma_{ij}| = 1$

- We express the metric in the ADM form $ds^{2} = -\alpha^{2}dt^{2} + \hat{\gamma}_{ij}(dx^{i} + \beta^{i}dt)(dx^{j} + \beta^{j}dt)$
- □ The spatial metric is further decomposed
 - $\hat{\gamma}_{ij} = a^2(t)e^{2\psi}\gamma_{ij}$ ψ : curvature perturbation

delta-N formalism

B.G. e-folding number cf. $N \equiv \int H dt$ • We define the non-linear e-folding number. $\mathcal{N} \equiv \frac{1}{3} \int \Theta \alpha \, dt \sim \int (H + \partial_t \psi) \, dt \quad \Theta \equiv \nabla_\mu n^\mu$ • ψ is given by the difference of "N" $\rightarrow \delta$ N formalism $\delta N \equiv N - N = \psi(t_{\rm fin}) - \psi(t_{\rm ini})$ $\overline{\psi}(\overline{t_{\mathrm{fin}}})$ $\psi = 0$ $\psi = 0$ $x^i = const.$ $x^i = const.$ $\psi(t_{
m ini})$

Evolution of curvature Pert.

By choosing the slicings ;

initial : flat & final : uniform ρ

 δN gives the final ψ on the uniform ho

initial

final

 $\rho = \text{const.}$

• Let us consider a perfect fluid :

 $T_{\mu\nu} = (\rho + P)u_{\mu}u_{\nu} + Pg_{\mu\nu}$

ullet The energy cons. law gives the evolution eq. for ψ

$$u_{\mu}\nabla_{\nu}T^{\mu\nu} = 0 \quad \blacksquare \quad H + \partial_t \psi = -\frac{1}{3}\frac{\partial_t \rho}{\rho + P}$$

Covariant formalism

• We define the curvature covector.

$$\boldsymbol{\zeta_{\mu}} \equiv \partial_{\mu} \mathcal{N} - rac{\dot{\mathcal{N}}}{\dot{
ho}} \partial_{\mu}
ho \qquad \dot{\mathcal{N}} \equiv \mathcal{L}_u \mathcal{N} = u^{\mu} \partial_{\mu} \mathcal{N}$$

• The energy cons. law gives the evolution eq. for ζ_{μ} , $\dot{\zeta}_{\mu} \equiv \mathcal{L}_{u}\zeta_{\mu} = -\frac{\Theta}{3(\rho+P)} \left(\partial_{\mu}P - \frac{\dot{P}}{\dot{\rho}}\partial_{\mu}\rho\right)$

Notice !!

the equation for ζ_μ is valid at all scales. N ~ ∫ dτ Θ
 there is an ambiguity in the choice of the initial slice, since N is defined in terms of the integration.

Equivalence 1

The relation between " ζ_{μ} " in the covariant formalism and " $\phi = \delta N$ " in the δN formalism is unclear.

• On the uniform energy density slicing : $\rho = \rho$ (t),

$$\zeta_i \Big|_E = \left(\partial_i \mathcal{N} - \frac{\dot{\mathcal{N}}}{\dot{\rho}} \partial_i \rho \right)_E = \partial_i \Big[\psi_E(t, x^j) - \psi(t_{\text{ini}}, x^j) \Big]$$

• We choose the initial flat slice as in the δ N formalism, $\zeta_i \Big|_E = \partial_i \Big[\psi_E \Big] = \partial_i \Big[\frac{\delta N}{\delta N} \Big]$

 \rightarrow This shows that δ N formalism = covariant formalism.

Equivalence 2

We can show the equivalence between two evolution eqs.

• The evolution eq. for ζ_{μ} on large scales

$$\frac{\dot{\zeta}_{\mu}}{\alpha} = -\frac{\Theta}{3(\rho+P)} \left(\partial_{\mu}P - \frac{P}{\dot{\rho}} \partial_{\mu}\rho \right)$$

$$\frac{1}{\alpha} \left[\partial_{i}\psi' + \frac{\partial_{i}\rho'}{3(\rho+P)} - \frac{\partial_{i}\rho(\rho'+P')}{3(\rho+P)^{2}} \right] \qquad \frac{1}{\alpha} \frac{\rho'}{3(\rho+P)^{2}} \left(\partial_{i}P - \frac{P'}{\rho'} \partial_{i}\rho \right)$$

$$\partial_{i}\psi' = -\partial_{i} \left[\frac{\rho'}{3(\rho+P)} \right]$$

 \rightarrow This also shows that δ N formalism = covariant formalism.

Conclusion

- We have shown that the non-linear equivalence between the δ N and covariant formalisms on superhorizon scales.
- In the proof, we have not assumed the gravity theory,
 which means the equivalence holds in any gravity theory.

Linear theory

 $R^{(3)} \sim \bigtriangleup \mathcal{R}$ $\blacksquare \text{ Let us consider perturbations around the FLRW universe.}$ $ds^{2} = a^{2}(\eta) \left[-(1+2A)d\eta^{2} - 2\bigtriangleup^{-1/2}B_{,i}dx^{i}d\eta + \left\{ (1+2\mathcal{R})\delta_{ij} - 2\bigtriangleup^{-1}C_{,ij} \right\} dx^{i}dx^{j} \right]$ $\mathcal{R} \sim \Phi_{N} \sim \bigtriangleup T/T$ (gravitational redshift)

• The Einstein equations \longrightarrow the master equation for R $\mathcal{R}_{c}^{\prime\prime} + 2\frac{z^{\prime}}{z}\mathcal{R}_{c}^{\prime} - \bigtriangleup\mathcal{R}_{c} = 0$ $\begin{array}{c} \mathcal{R}_{c}:\mathcal{R} \text{ in } \delta\phi = 0\\ z \equiv a \times \left(\phi_{0}^{\prime}/\mathcal{H}\right)\end{array}$

• On superhorizon scales $\lambda \gg H^{-1}$, Slow-roll $\mathcal{R}_c = \text{const.}$ and $\mathcal{R}'_c \propto z^{-2} \sim a^{-2}$

Curvature covector

- We define the e-folding number, which is the integration of the expansion along an integral curve of u^{μ} , $\mathcal{N} \equiv \frac{1}{3} \int d\tau \Theta = \frac{1}{3} \int d\tau \nabla_{\mu} u^{\mu}$
- We define the curvature covector, which is one of the most important quantities in the covariant formalism.

 ζ_μ ≡ ∂_μN ^N/_ρ∂_μρ
 where the dot denotes the Lie derivative with respect to u^μ,
 ^N ≡ L_uN = u^μ∂_μN ^ζ_μ ≡ L_uζ_μ = u^ν∂_νζ_μ + ζ_ν∂_μu^ν

Evolution equation for CC

The energy cons. law gives the evolution eq. for CC,

$$\dot{\zeta}_{\mu} = -\frac{\Theta}{3(\rho+P)} \left(\partial_{\mu}P - \frac{\dot{P}}{\dot{\rho}} \partial_{\mu}\rho \right)$$

When the adiabatic condition "P = P (ρ)" is satisfied, the RHS vanishes and CC is conserved.

Notice !!

1, the above equation is valid at all scales. 2, there is an ambiguity in the choice of the initial slice, since N is defined in terms of the integration. $\mathcal{N} \sim \int d\tau \,\Theta$