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Introduction 0 /20

k-iInflation can be motivated from effective field
theory + curvature coupling terms, &R

Jordan or Einstein frame??

. Single field models give full agreement
between two frames including non-Gaussianity

Qiu and Yang, Non-Gaussianities of single field inflation
with non-minimal coupling, Phys. Rev. D 83 (2011)
084022.

non-minimal coupled DBl (£ =0, 1/6) [see Easson et
al., Phys. Rev. D 80 (2009); ibid. 81(2010)]



Model 7120

——Non-minimal k-inflation N
S = [ d'ay=g[f()R +2P(p, X)]
1
Plp,X)=K(p)X + L(¢)X?* + - - X =—59"0up0up
g J

. For example in a two field Lagrangian:

L= 5007 + 500 + 1000 + S M0 +V(6) — SER( +?)

. Then below some H<<M we can integrate out o to get

(99)"
M4

Loy = 5007 + SO0 4 4 V(6) — 3ERS?

where M — M - ER/2

. Other examples might be DBI with more general éRgp?
term



Motivation 8 /20

. (Obtain constraints on inflation models via
observational data

. Kk-inflation with non-minimal coupling

. Most general single field theory with up to
1st order derivatives in ¢ (cf.

)

. (Can we get constraints on conformal
coupling &7

. Due to variable sound speed, k-inflation can generaite

large non-Gaussianity (e.g., equilateral limit): fnz o< —
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Comment on E and J frames

- Jordan frame ===
(non-minimal)

-~ Einstein frame =
(minimal)

A

action S action S

\4

mode function U

¥

power spectrum Pr |

mode function U

¥

| power spectrum P

¥

non-Gaussianity
<O‘ﬂk1 ﬂl@ @k:s |O>

non-Gaussianity
<O‘uk1uk2 Uk ‘O> ,

1. Kubota, N. Misumi, W. Naylor and N. Okuda, JCAP 02 (2012) 034, arXiv:
1112.5233 [gr-qc]



Standard k-inflation 10/-20

2
P(¢,X)=K(¢)X +X*+---

1
S= [ dav=g(5aR+ PO.X) X =g 0.00.0

_ 0P
00X

Consider FLRW universe described by line element

T,uz/ vu¢vu¢ - Pg,uz/ A E(gb,X) = 2XP7X — P

ds® = —dt* + a*(t)d;;dx" dz’

Friedmann equation and the continuity equation are

3H? = E

[ —3\/E(E +P) /\ master equa’riorD

K(@) changing from <0 to >0 essentially leads to
Inflationary attractor solutions




Attractors Iin k-inflation HE

In k-inflation, the universe can expand exponentially using
only master equation E = —3VE(E + P)

Solid lines are stable attractors (Armendariz-Picon, et al., PLB 458 1999)



kK-inflation phase diagram 12/-20

weak coupllng strong coupling

“\W////////////// :

We obtain similar attractor/slow-roll solutions in the non-minimal
case (see later If time permits)

(Armendariz-Picon, et al., PLB 458 1999)



Non-minimal k-inflation 13/-20

/ 2/ =g ( RP(¢, X))

non-minimal coupling

- Conformal transformation ~

_@,ul/ — ng,ul/ QQ = ‘1 _ £K2¢2‘
1 .

/ d*z/ =g (—R” (6, X)) P(¢, X) = K(¢)X + L(¢)X?
- via field redefinition
o) = TR L(6) = L(¢) = 1

& <0 obtained by substituting & — -| & |



E.g., Setting K(gp):-] 14/-20

. Actually even for K(p)<0 effect of &0 coupling leads
to a sign change In I?(go)
K(9)

10 -

—————’

. £=1/100,1/10and 1/3
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Speed of sound ¢ stays small until d¢ /dt («X) drops
& X
10+
08 - gg _ A_X — Pv’z
i E,)? P)? +2X o
0.6
04 -
I 5 L.,
02 X — §gu 8,0, ¢
s 10 15 ¢
1

Note that level of non-Gaussianity [fnyr 2



Example attractor solution 16/-20

. We see an attractor for E=p and E=-p (here for

&E=1/3)

T T m

0.05 -

. 0.05 - 0.10 - 0.15 L 0.20 - 0.25

—0.05;
. More plotg,n progress ...
o5

-0.20 -

-0.25



Power spectrum & spectral index '

S — / did®z [a3i7€2 _ aé(aR)ﬂ

e

~ -ﬁ )?ﬁ/\ ~ € ~ /(S
. Slow roll parameters: e=-—— =", 5=-—", 5=
H?2  H? ¢H ¢.H

———new variables z
N , 2a% b . i — 2V — Zv =0

v=2R, 2t == ) gy 2
. C ) — ?JE—I—(CS]{? )%=

(Note that é 1s a function of time = déy/dr <<I)

. Standard gquantization leads to:

~5 1 E2 1 H? dln PR
PR — S— — ne — 1 = k= _2F—n—35
k 36m% 4+ P 8m? Cs€ dln k

plots currently in progress (including e-tfoldings)...
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Appendix: Conformal properties ~

a = Qa d7 = dr dt = Qdt
N QQ’ 2
R:Q2{R+3((Q2)) X 0 = [1 - &r%97|
. K 3/(0%)\2 s P 3022
K=o+500) P=cit (o)
R =R F[—l(H+1Q—2)
N 0 2 ()2
-1 1 02 3,02\ 102
H= o5 # 580 1 (02) * 502l




Final Comments 19/-20

In k-inflation with non-minimal coupling, is there a
characteristic signal, different from other models?

Classical stability (backreaction) needs further
Investigation, even for DBl non-minimal models (next slide)

Non-canonical models lead to non-Gaussianity & non-
minimal coupling broadens allowed parameter space
(to be confirmed)

. Shape of non-Gaussianity Is important and has
contribution coming from & (later slide, time
permitting)

Preheating in non-minimal K-inflation interesting?



Classical stability? 20/-20

G

eyl where

. In Jordan frame easy to see G 4 =
oF = (K°E)1=M,*/(87&)

. However another instability can be found from EOM:

PXng —+ P¢ + (PXXV“X -+ PX¢V“¢)VM¢ — quR R,u,/ —

1
§g,uvR)¢2

Taking trace of T,y and subbing back into EOM =

12
pl — Ye 9
Y M2, ~
where ¢? = E(1—6¢/Px) (P=1, standard result)

. ' constraints = ¢ > ¢. only for anistropic spacetimes; cf
Futamase et al., Phys.Rev. D 39 (1989) 405-411

T = PxV 16V + g P+ €| D(8?) = ViV (6%) + (R —

Vﬂxvm 4P — 666 PX}




k-inflation with non-minimal coupling #/*°

. Shape of non-Gaussianity from & -contribution

y ! 2,022
equilateral limit > . F(1,x2,x3)x2°x3

squeezed limit

. In all limits non-minimal part has nonzero value

F(ki, ko, k3) 3k1koks 1
kikoks 2k k? ; /

. Result from N. Misumi’s Master’s thesis (cf. Qiu & Yang)



Appendix: Other shapes 22/-20

Higher Deriv. 0.9 o Ghost inflation l()‘
08 N
0.7
‘ ,0.6
F(1,x2,x3)x°x3’
A . 02 0
: : 04 = e — 0.4 0.2
l 0.(\ 06 - l ().8 ().6 ot
Local x3=k3/k1,
‘ x2=kvk;
0.4
1 08 06

(Babich et al. 2004)

X3

The shape of non-Gaussianity depends on model of inflation; however,
current data not sensitive to shape; only overall amplitude fnL



ds?

Appendix: ADM Decomposition  **

In what follows drop the hat and for Einstein,

= —N?dt* + hyj(de’ + N'dt)(dz’ + N dt)

frame

NiAt /

Lo
1 ; frar g
- / d*zvVhN[R® + 2P + N72(E;;E"Y — E?)]

5:2

1
Eij = 5(hij = ViNj = V;Ni) C
t

Hamiltonian and momentum constraints equations >

are given by
R® 4 2P —2N2Px(¢ — N'9;p)?> — N"%(E;; B —
Vi(NT'E) —Vi(N'E) = PxN'0;p(p — N'0;p)

E*) =0

Solve constraints equations to first order only for N
and N (Chen et al. JCAP 0O1); in unitary gauge

5¢ = ( ] hij — a262R5Z’j



Appendix: Invariance of 24/-20
curvature perturpbation R

In the Einstein frame fluctuations around FLRW imply

AN

ds® = —(dt)® +a(t)*e®™ (65 +7i), (075 =0, 6773, =0) .
which via a conformal transformation leads to
ds® = —(dt)® + a(t)*e*™ (65 + vi5) (05 =0, 6775 =0)

_ é [—(d0)? + (1) (655 +7i5)}

Comparison between the metrics in each frame implies:

AN

R =R, Yij = Vij

Thus, scalar curvature (R) and tensor perturbations are
conformally invariant

More details see: Chiba & Yamaguchi JCAP 0810 (slow roll),
and Gong et al. JCAP 1109 (Tautology & o N formalism)



