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/~20My non-Gaussianity 

• Prof. Moss (Ph.D.)

• Prof. Sasaki (Post Doc)

• Prof. Kubota (HETOU)

• Kubota-Moss-Sasaki scale invariant 
spectrum ⇒ I should know everything 
they know

• Non-Gaussianity ⇒ I don’t know and 
need students like Misumi and Okuda
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/~20Het Camp 2011

• Misumi and Okuda are nowhere to be seen?
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/~20Introduction

• k-inflation can be motivated from effective field 
theory + curvature coupling terms, ξφ2R

• Jordan or Einstein frame?

• Single field models give full agreement 
between two frames including non-Gaussianity

• Qiu and Yang, Non-Gaussianities of single field inflation 
with non-minimal coupling, Phys. Rev. D 83 (2011) 
084022.

• non-minimal coupled DBI (ξ=0, 1/6) [see Easson et 
al., Phys. Rev. D 80 (2009); ibid. 81(2010)]
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/~20Model

• For example in a two field Lagrangian: 

• Then below some H<<M we can integrate out ρ to get

where M → M - ξR/2

• Other examples might be DBI with more general ξRφ2  

term
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/~20Motivation

• Obtain constraints on inflation models via 
observational data

• k-inflation with non-minimal coupling

•  Most general single field theory with up to 
1st order derivatives in φ (cf. Horndeski/G-
inflation at 2nd order) 

• Can we get constraints on conformal 
coupling ξ?

• Due to variable sound speed, k-inflation can generate 
large non-Gaussianity (e.g., equilateral limit):
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/~20Comment on E and J frames

Einstein frame

action action SŜ

mode function mode functionûk̂ uk

power spectrum power spectrum PR

non-Gaussianity non-Gaussianity
�0|uk1uk2uk3 |0⇥�0|ûk1 ûk2 ûk3 |0⇥

Jordan frame
(minimal) (non-minimal)
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T. Kubota, N. Misumi, W. Naylor and N. Okuda, JCAP 02 (2012) 034, arXiv:
1112.5233 [gr-qc]
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/~20Standard k-inflation

• Consider FLRW universe described by line element

• Friedmann equation and the continuity equation are

• K(φ) changing from <0 to >0 essentially leads to 
inflationary attractor solutions
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(Armendariz-Picon, Damour, Mukhanov, 1999 )

E(�, X) = 2XP,X � P

S =
⇤

d4x
⇥
�g

� 1
2�2

R + P (⇥, X)
⇥

X = �1
2
gµ⇥⇥µ�⇥⇥�

Tµ⇥ =
⇥P

⇥X
⇥µ�⇥⇥�� Pgµ⇥
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/~20Attractors in k-inflation
In k-inflation, the universe can expand exponentially using 
only master equation Ė = �3

⇥
E(E + P )

P=E 

P=‐E 

E 

P 
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(Armendariz-Picon, et al., PLB 458 1999)Solid lines are stable attractors



/~20k-inflation phase diagram

We obtain similar attractor/slow-roll solutions in the non-minimal 
case (see later if time permits)
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(Armendariz-Picon, et al., PLB 458 1999)



/~20Non-minimal k-inflation 13
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/~20E.g., setting K(φ)=-1

• Actually even for K(φ)<0 effect of ξ>0 coupling leads 
to a sign change in K(φ)

• ξ＝1/100,1/10 and 1/3
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/~20

K(φ)=-1

• Speed of sound cs stays small until dφ/dt (∝X) drops

• Note that level of non-Gaussianity 
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/~20Example attractor solution

• We see an attractor for E=p and E=-p (here for 
ξ=1/3)

• More plots in progress ...
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/~20Power spectrum & spectral index

• Slow roll parameters:

(Note that ĉs is a function of time ⇒ dĉs/dt <<1)

• Standard quantization leads to:

plots currently in progress (including e-foldings)... 
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bcs bH

v = z bR , z2 =
2ba2b✏
bc2s

bP bR
bk =

1

36⇡2

bE2

bE + bP
=

1

8⇡2

bH2

bcsb✏
, bns � 1 =

d lnP
bR
bk

d lnbk
= �2b✏� b⌘ � bs

v̈bk +
⇣
c2sbk2 �

z̈

z

⌘
vbk = 0



/~20

Appendix: Conformal properties
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/~20Final Comments

• In k-inflation with non-minimal coupling, is there a 
characteristic signal, different from other models?

• Classical stability (backreaction) needs further 
investigation, even for DBI non-minimal models (next slide)

• Non-canonical models lead to non-Gaussianity & non-
minimal coupling broadens allowed parameter space 
(to be confirmed)

• Shape of non-Gaussianity is important and has 
contribution coming from ξ (later slide, time 
permitting)

• Preheating in non-minimal K-inflation interesting?
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/~20Classical stability?

• In Jordan frame easy to see                        , where
 φc2 = (κ2ξ)-1=Mpl2/(8πξ)

• However another instability can be found from EOM:                                                             

Taking trace of Tµν and subbing back into EOM ⇒

where                           (Px=1, standard result)

• ℋ constraints ⇒          only for anistropic spacetimes; cf. 

Futamase et al., Phys.Rev. D 39 (1989) 405-411
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/~20k-inflation with non-minimal coupling

• Shape of non-Gaussianity from ξ-contribution

• In all limits non-minimal part has nonzero value

• Result from N. Misumi’s Master’s thesis (cf. Qiu & Yang)
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squeezed limit
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/~20Appendix: Other shapes 22

The shape of non-Gaussianity depends on model of inflation; however, 
current data not sensitive to shape; only overall amplitude fNL

(Babich et al. 2004)

F(1,x2,x3)x22x32

x3=k3/k1, 
x2=k2/k1



/~20Appendix: ADM Decomposition
• In what follows drop the hat and for Einstein frame

• Hamiltonian and momentum constraints equations 
are given by

• Solve constraints equations to first order only for N    
and Ni (Chen et al. JCAP 01); in unitary gauge
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/~20Appendix: Invariance of 
curvature perturbation R

• In the Einstein frame fluctuations around FLRW imply

which via a conformal transformation leads to

• Comparison between the metrics in each frame implies:

• Thus, scalar curvature (R) and tensor perturbations are 
conformally invariant

• More details see: Chiba & Yamaguchi JCAP 0810 (slow roll), 
and Gong et al. JCAP 1109 (Tautology & δN formalism)

dbs2 = �(dbt)2 + ba(bt)2e2 bR (�ij + b�ij) , (@ib�ij = 0, �ijb�ij = 0) .

ds2 = �(dt)2 + a(t)2e2R (�ij + �ij) , (@i�ij = 0, �ij�ij = 0) ,

=
1

⌦2

�
�(dbt)2 + ba(bt)2e2R (�ij + �ij)

 

bR = R, b�ij = �ij
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