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● Review quasi-local energy-momentum

● Review the covariant Hamiltonian formalism results

⊲ the Hamiltonian boundary term

● How to choose the reference: isometric matching and optimization

● results for spherically symmetric metrics



Quasi-local energy-momentum
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Energy-momentum is the source of gravity.
Gravitating bodies can exchange energy-momentum with gravity—locally
yet there is no well defined energy-momentum density for gravity itself.
(a consequence of the equivalence principle)

Traditional approach: non-covariant, reference frame dependent,
energy-momentum complexes, i.e., pseudotensors
Ambiguity 1.: no unique expression
(Einstein, Papapetrou, Landau-Lifshitz, Bergmann-Thompson, Møller,
Goldberg, Weinberg, . . . )
Ambiguity 2.: which reference frame?

The modern idea is quasi-local (associated with a closed 2-surface)
[see Szabados, Living Reviews of Relativity, 2009]

One approach is via the Hamiltonian (the generator of time evolution).
This includes all the classical pseudotensors as special cases, while
taming their ambiguities, providing clear physical/geometric meaning.



covariant Hamiltonian formulation results
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For geometric gravity theories the Hamiltonian 3-form is a conserved
Noether current as well as the generator of the evolution of a spatial
region along a space-time displacement vector field, it has the form

H(N) = NµHµ + dB(N), dH(N) ∝ field eqns ≃ 0

where NµHµ, which generates the evolution equations, is proportional to
field equations (initial value constraints) and thus vanishes “on shell”.
Hence the value is determined by the total differential (boundary) term,

E(N,Σ) :=

∫

Σ
H(N) =

∮

∂Σ
B(N) Thus it is quasi-local.

Note: B(N) can be modified—by hand—in any way without destroying the
conservation property. One can arrange for almost any conserved value.

Fortunately the Hamiltonian’s role in generating evolution equations tames
that freedom.



Boundary Variation Principle
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[Lanczos (1949), Regge-Teitelboim (1974), Kijowski-Tulczjew (1979), . . . ]
One must look to the boundary term in the variation of the Hamiltonian.
Requiring it to vanish yields the boundary conditions. The Hamiltonian is
functionally differentiable on the phase space of fields satisfying these
boundary conditions. Modifying the boundary term changes the boundary
conditions.
[different pseudotensors correspond to different boundary conditions]

● The boundary term B(N) determines both the quasi-local value and
the boundary condition.

● In order to accommodate suitable boundary conditions one must, in
general, also introduce certain reference values which represent the
ground state of the field—the “vacuum” (or background field) values.

For any quantity α, let ∆α := α− ᾱ where ᾱ is the reference value.



Preferred Boundary Term for GR
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Chen, N, Tung (1995) [also found by Katz, Bičák & Lynden-Bel]

B(N) =
1

2κ
(∆Γα

β ∧ iNηα
β + D̄βN

α∆ηα
β) ηαβ... := ⋆(ϑα ∧ ϑβ ∧ · · · )

fix the orthonormal coframe ϑµ (∼ metric) on the boundary:

δH(N) ∼ diN (∆Γα
β ∧ δηα

β)

Like other choices, at spatial infinity it gives the ADM, MTW (1973),
Regge-Teitelboim (1974), Beig-Ó Murchadha (1987), Szabados (2003)
energy, momentum, angular-momentum, center-of-mass

Its special virtues:
(i) at null infinity: the Bondi-Trautman energy & the Bondi energy flux
(ii) it is “covariant”
(iii) it has a positive energy property
(iv) for small spheres, a positive multiple of the Bel-Robinson tensor
(v) first law of thermodynamics for black holes
(vi) in certain cases it reduces to Brown-York, hence for spherical
solutions it has the hoop property



the reference and the quasi-local quantities
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● Note: For all other fields it is appropriate to choose vanishing
reference values as the reference ground state—the vacuum.

● But for geometric gravity the standard ground state is the
non-vanishing Minkowski metric. A non-trivial reference is essential.

● With standard Minkowski coordinates yi, a Killing field of the reference
has the form Nk = Nk

0 + λk
0 ly

l, where λkl
0 = λ

[kl]
0 , with Nk

0 and λkl
0

being constants. The 2-surface integral of the Hamiltonian boundary
term then gives the value

∮

S

B(N) = −Nk
0 pk(S) +

1

2
λkl
0 Jkl(S),

i.e., not only a quasi-local energy-momentum but also a quasi-local
angular momentum/center-of-mass. The integrals pk(S), Jkl(S) in the
spatial asymptotic limit agree with accepted expressions for these
quantities.



the reference
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● For energy-momentum take Nµ to be a translational Killing field of the
Minkowski reference. Then the second quasi-local term vanishes.

● Remark: Holonomically (with vanishing reference) the first term is
Freud’s 1939 superpotential. Thus we are in effect making a proposal
for best choice of coordinates for the Einstein pseudotensor.

To construct a reference choose, in a neighborhood of the desired
spacelike boundary 2-surface S, 4 smooth functions yi, i = 0, 1, 2, 3 with
dy0 ∧ dy1 ∧ dy2 ∧ dy3 6= 0 and then define a Minkowski reference by
ḡ = −(dy0)2 + (dy1)2 + (dy2)2 + (dy3)2.

equivalent to finding a diffeomorphism for a neighborhood of the 2-surface
into Minkowski space. The reference connection is obtained from the
pullback of the flat Minkowski connection.
Then with constant Nk our quasi-local expression takes the form

B(N) = Nkxµk(Γ
α
β − xαj dy

j
β) ∧ ηµα

β.



Isometric matching of the 2-surface
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The reference metric on the dynamical space has the components

ḡµν = ḡijy
i
µy

j
ν . (1)

Consider the usual embedding restriction: isometric matching of the
2-surface S. This can be expressed quite simply in terms of
quasi-spherical foliation adapted coordinates t, r, θ, φ as

gAB = ḡAB = ḡijy
i
Ay

j
B = −y0Ay

0
B + δijy

i
Ay

j
B (2)

on S, where A,B range over 2, 3 = θ, φ.

From a classic closed 2-surface into R
3 embedding theorem, we expect

that that—as long as one restricts S and y0(xµ) so that on S

g′AB := gAB + y0Ay
0
B (3)

is convex—one has a unique embedding.

Wang & Yau used this type of embedding in their recent quasi-local work.



Complete 4D isometric matching
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• Our “new” proposal complete isometric matching on S:
[already suggested by Szabados in 2000]

10 constraints : gµν |S = ḡµν |S = ḡijy
i
µy

j
ν |S .

on 12 embedding functions on the 2-surface of constant t, r:

yi(=⇒ yiθ, y
i
φ), yit, yir

In terms of the orthonormal coframe ϑα with 6 local Lorentz gauge d.o.f.
Lorentz transform to match the reference coframe dxα on the 2-surface.
Integrability condition: the 2-forms dϑα should vanish when restricted to
the 2-surface:

dϑα|S = 0, 4 restrictions

Determine the optimal “best matched” reference by energy extremization.



The best matched reference geometry
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● 12 embedding variables subject to 10 isometric conditions
● equivalently, 6 local Lorentz gauge subject to 4 embedding conditions
● To fix the remaining 2, regard the quasi-local value as a measure of

the difference between the dynamical and the reference boundary
values.

● We propose taking the optimal embedding as the one which gives the
extreme value to the associated invariant mass m2 = −pipj ḡ

ij .
Reasonable, since quasi-local energy should be non-negative and
vanish only for Minkowski space.

● minimize. There are 2 different situations.

I: Given a 2-surface S take the inf of m2. This should determine the
reference up to Poincaré transformations.
II: Given a 2-surface S and a vector field N , take the inf of E(N,S).
[Afterward one could extremize over the choice of N .]

Based on some physical and practical computational arguments it is
reasonable to expect a unique solution.



Static, spherically symmetric spacetime
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Reissner-Nordström–(Anti)-de Sitter metric:
A = 1− 2m

r
+ Q2

r2
− Λ

3 r
2 B = 1− Λ

3 r
2

Program A: N = ∂T EA(N) = r(
√

−g(N,N)B −AN t)

Nstatic =
1√
A
∂t ⇒ EA(Nstatic) =

2m−Q2/r√
B +

√
A

● non-negative except for the small region r < Q2/2m inside the inner
horizon, where the gravitational “force” is repulsive

● For Schwarzschild (Q = 0 = Λ), the result is the standard one
obtained by many people using different quasi-local energy
expressions. (Brown-York, Liu-Yau, Wang-Yau, Chen-N-Tung, etc.)

Program B : £N (area) = £N (area), EB =
−g(N,N)(2m−Q2/r)

√

−g(N,N)B + (N r)2 +AN t

EB(Nstatic) = EA(Nstatic)



4D isometric matching
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Eiso = r(BNT −AN t) =
l2(2m−Q2/r) + r((NR)2 − (N r)2)
√

l2B + (NR)2 +
√

l2A+ (N r)2

where l2 = −g(N,N).

N = ∂T =⇒ Eiso = EA

£N (area) = £N (area) =⇒ Eiso = EB =
−g(N,N)(2m−Q2/r)

√

−g(N,N)B + (N r)2 +AN t



FLRW A = a(t)/
√
1− kr2
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Program A: EA = ar(
√

−g(N,N)−A−1aN t −AȧrN r)

⊲ comoving observer: EA(∂t) = ar(1−
√
1− kr2) = kar3

1+
√
1−kr2

note: proportional to k, hence positive, negative or vanishing

EA(Ndmc) =
ar3(k + ȧ2)

1 +
√
1− kr2 − ȧ2r2

=
8π
3 ρ(ar)3

1 +
√

1− 8π
3 ρ(ar)2

≥ 0

EB =
ar

(

−g(N,N)(k + ȧ2)r2
)

√

−g(N,N) + (ȧrN t + aN r)2 +
√
1− kr2N t + aȧr√

1−kr2
N r

≥ 0

comoving EB(∂t) =
ar3(k + ȧ2)√

1 + ȧ2r2 +
√
1− kr2

, EB(Ndmc) = EA(Ndmc)

Eiso = ar

(

NT −
√

1− kr2N t − aȧr√
1− kr2N r

)

,

EisoB = EB , Eiso(∂T ) = EA
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approach energy for RN-AdS
iso E = r(BNT −AN t)

isoA E = r(
√

−g(N,N)B −AN t)

isoB E = r(
√

−g(N,N)B + (N r)2 −AN t)

where A = 1− 2m
r

+ Q2

r2
− Λ

3 r
2, B = 1− Λ

3 r
2.

approach energy for FLRW
iso E = ar(NT − aNt

A
−AȧrN r)

isoA E = ar(
√
l2 − aNt

A
−AȧrN r)

isoB E = ar(
√

l2 + (ȧrN t + aN r)2 − aNt

A
−AȧrN r)

where A = a√
1−kr2

, l2 = −g(N,N).
iso means matching the orthonormal frames.
isoA means iso with the restriction N = ∂T .
isoB means iso with the restriction £N (area) = £N (area).
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