
EMERGENT LORENTZ SYMMETRY  
AND  
 

DOUBLY SPECIAL RELATIVITY 

Fabio Scardigli 
Institute of Physics 
Academia Sinica  
Taipei - Taiwan 
 
[arXiv: 1105.3930] 
 
2012 Asia Pacific School on Cosmology and Gravitation,  
Yukawa Institute for Theoretical Physics, Kyoto, 4 March 2012 



Introduction and Outline 

Theme of EMERGENT SYMMETRIES: 
 

* Gauge symmetries as emergent symmetries  (‘t Hooft, B.L.Hu, etc.) 

• after all a symmetry at large may be not a symmetry at small : 
 Planck scale symmetries may be different from the usual ones 

 

*  An Example:   LORENTZ   SYMMETRY 
 

Lorenz  Invariance has shaped  the  Physics  of  XX  Century 

 *Relativity, Dirac Equation, QFT, Standard Model,… 
  

 But… is it an Exact  symmetry for any Arbitrary Boost???  

 Lorenz group has an infinite volume 

Reasons  for Lorenz Invariance violations:  

• UV divergences, Landau poles,… 

• Various Quantum Gravity approaches: 

- Space-time foam 

- Loop Quantum Gravity 

- GUP    Minimum length 

* DSR program incorporates seriously the idea of a minimum length.  
 



Using Relativistic Quantum Mechanics (RQM), [formulated via 
path integrals]      
+o+ Lorenz Symmetry broken at short space-temporal scales, 
+o+ yet emerges as an exact symmetry at large scales. 

Relativistic Path Integral written as superposition of non 
relativistic path integrals:  
 

* * On short spatial scale (L << λC Compton length) a single 

particle follows a non-relativistic Brownian motion (Wiener 
process) with a fluctuating Newtonian mass.  The particle 
moves as if it randomly propagates (in the sense of Brownian 
motion) through a granular or ``polycrystalline" medium. 
 

**  On large spatial scale (L >> λC particle’s Compton length), 

the particle evolves according to a genuine relativistic motion, 
with a sharp value of the mass coinciding with the Einstein 
rest mass. 



Extension to Doubly Special Relativistic (DSR) models. 
 
* DSR in a Nutshell: In DSR we have 2 invariant scales: the 
speed of light c, and a length l, assumed typically of order of 
the Planck length.  
 
* In the present framework, the scale l is naturally identified 
with the minimal grain size of the polycrystalline medium. 
From the structure of paths in the Feynman summation, as in 
SR, one can compute correlation lengths and canonical 
commutation relations . 



Emergent Special Relativity  (single free particle – no interaction) 

where 

= 

This is a special case of a more general formula derived in the framework of 
probabilities formulated as superposition of path integrals (= so called 
“superstatistics”) .  

 

 

Commutators 
The time interval t is understood as the 

time after which the observation 
(position measurement) is performed. 

During the time interval t the system 

remains unperturbed. 



   Physical interpretation 
 

The structure of the previous identity implies that  m̃ can be 

interpreted as a Newtonian mass which takes on continuous values 

distributed according to  

 

with                and 

 

 

 

In the long run all mass fluctuations are washed out and only a sharp, time-
independent, effective Lorentz invariant mass is perceived. 

Time scale of this process from the form of  m̃ :  
 
 

This is the Compton time t_C.  



when  t  >> 1/mc2  then  m̃  rapidly converges to the relativistic value m:  

the motion becomes genuinely relativistic at large times.  

 

For   t  >> 1/mc2    m > 1/tc2 , which means  mc2 t > 1. 

That is , for large t, the relativistic Heisenberg inequality for the energy/time 
variables is satisfied,   
 

For  t << 1/mc2 ,  

the fluctuations of  Newtonian mass  m̃  around the average m are huge.  
The motion seems to happen inside a specific space region (a “space-grain”), 
and in each space-grain the motion is a classical, i.e. non relativistic, Brownian 

motion controlled by the Newtonian Hamiltonian p2 / (2 m̃).  
In fact there, the relativistic Heisenberg uncertainty relation is clearly violated, 

mc2 t < 1 (remind that m is the Einstein relativistic mass). 

 
 

   Further physical implication 
 

However, if we compute the non-relativistic Heisenberg relation, using the Newtonian 
mass  m̃  and the non-relativistic kinetic energy  E ≈ m̃̃ v2, we find that Heisenberg relation 
is not violated.    the motion is NON RELATIVISTIC ! 

m~



•Fluctuations of the Newtonian mass   happen   AS IF   the particle evolves in 
an ``inhomogeneous'' or a ``polycrystalline''  medium.  
• Granularity       corrections in the local dispersion relation  
     alterations in the local effective mass.  
The following picture emerges:  
 

* On the short-distance scale (fast-time process, time scale  ≈  1 / m c2  ≈  

Compton time t_C), a non-relativistic particle propagates through a single 
grain with a local mass m,̃ in a classical Brownian motion. 

* For time scales >> t_C (large-distance scale), each space grain encountered 

by the particle endows it with a mass   m̃, with probability given by the function 
f_1/2 .  

The smearing distribution    f_1/2(…)      δ( m̃ – m )     for     t      ∞ 

So, at large times, the particle acquires a sharp mass equal to Einstein's  mass  
(i.e., Lorentz invariant). 

For paths   L >> λC   (t >> t_C ) 

the particle net velocity is < C 
(as it should be for massive 
relativistic particles!) 
 



The Hausdorff dimensions of 
representative trajectories in 
Path Integral:  

* L < λC Compton  d_H=1 
(super-diffusive process). 

* L > λC Compton  d_H=2 
(Brownian diffusion). 



  Emergent Doubly Special Relativity 
 

DSR tries to implement a second invariant, besides the speed of light, into the 
transformations among inertial reference frames .  
This new invariant comes directly from the research in Quantum Gravity, and 
it is assumed to be an observer-independent length-scale --- the Planck length 

lp, or its inverse, i.e., the Planck energy Ep = c / lp. 

Connection between DSR and Special Relativity 

When microstructure of space-time is considered,  
then Special Relativity or DSR seem to emerge from particular choices of such 
microstructure itself, and from classical Hamiltonian mechanics. 

DSR  1    Deformed Dispersion Relation 

Physical Hamiltonian H = c p0, generator of 

the temporal translations in respect to 

coordinate time t. 



SUPERSTATISTICS  IDENTITY 

where Deformation 
parameter 

Particle rest 
energy 

Averaged  Newtonian mass 



The fluctuating Newtonian mass  m̃  converges rapidly,  
for long times t, to the DSR1 invariant rest mass m. 
The rate of convergence is controlled also by the parameter λ.  
Since    
 
then  m̃  can converge rapidly to the DSR1 value m, even at short times, 
provided that the particle's energy E be close to the Planck energy Ep.    
The correlation distance (= typical size of a space grain) is now given by  
1/(m c λ), and since λ > 1, then 1/(m c λ) < 1/(m c) always. 

Commutators with 



DSR 2  Deformed Dispersion Relation 

Physical Hamiltonian H = c p0. 

SUPERSTATISTICS  IDENTITY 

where Particle rest 
energy 

Deformation 
parameter 

Averaged  Newtonian mass 



The DSR 2 model does not have the desired property that its 
fluctuating mass converges to a Lorentz mass in the large t limit.  
In addition, since ζ   (0,1), the fluctuations at short times cannot be 
suppressed and one cannot hope to have a relativistic system with a 
sharp Einstein mass at the Planck energy. 

Commutators 

These  CCR coincides with the SR commutator. 
This fact is not surprising, since CCR's directly reflect the roughness of the 
representative paths and we know that the fractal dimension of the DSR2 
system coincides with that of SR. 



REMARKS 

 
 The presented concept of statistical emergence 

of  SR and DSR offers  insights into the Planck-
scale structure of space-time.  
 

 The existence of a discrete polycrystalline 
substrate could be welcomed in various quantum 
gravity constructions. 
 

 The discrete structure of space and time 
(predicted by many Quantum Gravity models) 
can cure classical singularities.  

 (See e.g. Loop Quantum Cosmology, space-time 
foam). 



 Extension to Interacting Systems 

 Deeper understanding of a dynamical origin of 
our smearing functions  f_1/2 

 A small departure from the standard form of f 1/2 
leads  from Lorenz symmetry to DSRs symmetries 

 Lorenz  symmetry  is not fundamental: is 
controlled by the  specific form of f ½   (grain 

distribution)  

 Extension to curved space-times 

 Connection with Horava-Lifshitz gravity (space 
and time are not equivalent at the fundamental 
level) 

 

Open Questions 



SUMMARY 

 

 

• Both SR and DSR systems can arise by statistically coarse-graining 
underlying non relativistic (Wiener) process, making the latter more 
fundamental and the former emergent.  

 

•  The coarse-graining arises from a  superposition of two stochastic 
processes.  

 

• On a short spatial scale (shorter than particle's Compton 
wavelength) the particle moves according to a Brownian, non-
relativistic, motion. Its Newtonian mass fluctuates according to an 
inverse Gaussian distribution. 

 

• The averaged (or coarse-grained) velocity over the Compton time is 
the light velocity c. 

 

• On a time scale larger than the Compton time, the particle behaves 
as a genuine relativistic particle, with a sharp mass equal to Einstein 
(i.e., Lorentz invariant) mass. In this case a massive particle moves 
with a net velocity smaller than c. 
 


