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Holography: a brief introduction

Early (rough) ideas of holography
G. ’t Hooft, [gr-qc/9310026].
L. Susskind, J. Math. Phys. 36, 6377 (1995).
A more precise prescription: AdS/CFT
J. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998).
E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998).
Basic principle (Euclidean):

ZBd+1 [φ̄ ] =
∫

Dψ exp(−ICFT[φ̄ ,ψ])

ZBd+1 [φ̄ +δ φ̄ ] = ZBd+1 [φ̄ ]
〈

exp
∫
Sd

δ φ̄Oφ

〉
CFT
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Holography: a brief introduction

More info from superstring theory
Classical limit ↔ Large Nc limit
Weak coupling ↔ Strong coupling
Generalization: bulk/boundary correspondence
AdS/QCD(rs/z), AdS/CMT, HEE, gravity/fluid, . . .

Zbulk[φ̄ ] =
∫

Dψ exp(−IFT[φ̄ ,ψ])

Zbulk[φ̄ +δ φ̄ ] = Zbulk[φ̄ ]
〈

exp
∫

bdry
δ φ̄Oφ

〉
FT

Basic dictionary: φ |bdry ↔ Non-dynamical field φ̄
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The bulk/boundary correspondence

Under the classical approximation of the bulk gravity,

Zbulk[φ̄ ]→ exp(−Ibulk[φ̄ ]) =⇒

exp(−Ibulk[φ̄ ]) =
∫

Dψ exp(−IFT[φ̄ ,ψ])

with Ibulk[φ̄ ] the on-shell action (Hamilton’s principal function).
Variation with respect to φ̄ gives

−δ Ibulk[φ̄ ]
δ φ̄(x)

=
〈
Oφ (x)

〉
FT , Oφ =−δ IFT[φ̄ ,ψ]

δ φ̄(x)

Further variations give the correlations of Oφ on the boundary.
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The bulk/boundary correspondence

Important examples (with nµ the unit normal of the boundary)
Fields Bulk Boundary

Electromagnetic −nµF µa|bdry Current 〈Ja〉
Gravitational Brown-York tab|bdry Stress tensor

〈
T ab〉

Additional dictionary
Black holes ↔ Thermal field theory
Local Hawking temperature ↔ Temperature
Holographic renormalization group (RG) flow
Position of the boundary ↔ Energy scale
Black hole horizon ↔ IR limit
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A simple example

On an arbitrary cutoff for the Schwarzschild-AdS black brane

ds2
d+1 =−f (r)dt2 +

dr2

f (r)
+ r2dx2, f (r) =

r2

l2
− 2m

rd−2

ds2
d =−fcdt2 + r2

c dx2, fc := f (rc)

dE +pdV = TdS (the 1st law of thermodynamics)
E +pV = TS (the Gibbs-Duhem relation)

=⇒


dp = sdT
ε +p = Ts
dε = Tds
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Thermodynamics

The Brown-York tensor

tab =
1

8πG
(Kγ

ab−K ab)

has a form of the (relativistic) ideal fluid:

tab = εuaub +phab, hab = γ
ab +uaub

s: Bekenstein-Hawking entropy density
T : local Hawking temperature
The thermodynamic relations hold.
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Generalization

The Gauss-Bonnet case

I =
1

16πG

∫
dd+1x

√
−g(R−2Λ+αLGB),

LGB = R2−4RµνRµν +RµνστRµνστ

with much more complicated Brown-York-like boundary tensor
but the same thermodynamic relations.
The charged case and chemical potential

E +pV = TS + µQ, q =
Q

rd−1
c

dε = Tds + µdq, µ =−d −1
8πG

Q√
fc

(
1

rd−2
c

− 1
rd−2
h

)
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The physical picture

The physical picture
Bulk: black holes that eat
everything
Boundary: transportation
that smoothes everything

Figure: A sketch map
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Transportation

Linear response theory
Example 1: Ohm’s law

J i = σE i

Example 2: Newton’s law of viscosity

T xy =−2ησ
xy
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Entropy production

Y. Tian, X.-N. Wu and H.-B. Zhang, in preparation.
Macroscopic verification of the bulk/boundary correspondence
(poor man’s way to holography)

Type Driving force Entropy production
Heat conduction Temperature gradient -

Viscosity Velocity gradient Friction heat
Electric condution Electric field Joule heat

Table: Transport processes
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Entropy production

The boundary side
The entropy production rate

Σ = j iq∇i
1
T
− 1

T
Π

ij
σij +

1
T

j iEi

The bulk side
The entropy variation

δS =
δM
TH
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The gravity/fluid case: basics

Einstein equations:{
G rb = 0 =⇒ ∇atab = 0 (momentum constraint)
G rr = 0 =⇒ dta

btb
a = t2 (Hamiltonian constraint)

Stress-energy tensor of a relativistic fluid:

tab = εuaub +phab−2ησab + · · ·

Under the non-relativistic limit for ε = const (incompressible),

∇atab = 0 =⇒

{
∂iv i = 0 (b = t)
∂tv i +v ·∇v i +∂iP−ν∇

2v i = 0 (b = i)

(incompressible Navier-Stokes equations)
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Gravitational perturbation for flat cutoff surface

Long-wavelength expansion for the gravitational perturbation
↔ Derivative expansion for the dual fluid

The non-relativistic scaling:

∂t ∼ ε
2, ∂i ∼ ε, ∂r ∼ 1, P ∼ ε

2, v i ∼ ε

How to reduce the gravitational DoF to the dual fluid DoF?

Dirichlet-type boundary condition on the cutoff surface (γab
kept fixed)
Ingoing boundary condition on the future horizon (regularity
condition under the retarded Eddington coordinates)
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The Rindler case

I. Bredberg, C. Keeler, V. Lysov and A. Strominger,
[arXiv:1101.2451].

The ingoing Rindler metric:

ds2
d+1 =−rdτ

2 +2drdτ +dx2

ds2
d =−rcdτ

2 +dx2

The bulk gravitational perturbation is introduced, involving the
(incompressible) fluid DoF v i (τ,x i ) and P(τ,x i ).
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The Rindler case

The perturbed metric solving the bulk Einstein equation up to
O(ε2) provided ∂iv i = 0 (incompressibility).

The corresponding Brown-York tensor tab can be computed,
which takes a form as the stress-energy tensor of
incompressible fluid with viscosity η . Moreover, the regularity
condition requires η

s = 1
4π

(independent of rc).

The incompressible Navier-Stokes equation follows.
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Other cases

The AdS black brane case
R.-G. Cai, L. Li and Y.-L. Zhang, JHEP 1107 (2011) 027
[arXiv:1104.3281].

The charged AdS black brane case
C. Niu, Y. Tian, X.-N. Wu and Y. Ling, [arXiv:1107.1430].
The discussion is also extended to the Gauss-Bonnet case with
η

s = 1
4π
{1−2(d −3)α[d − (d −2)q2

h]} (independent of rc but
dependent on qh = Q

rd−1
h

).

η and the momentum diffusion constant D = η

ε+p are
consistent with linear response theory on arbitrary cutoff rc for
d = 4 (X. Ge, Y. Ling, Y. Tian and X. Wu, JHEP 1201 (2012)
117 [arXiv:1112.0627]).
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Lysov-Strominger’s basic ideas

V. Lysov and A. Strominger, [arXiv:1104.5502].
The Brown-York tensor (or extrinsic curvature) is directly
taken as fundamental variables.

The boundary condition for the conformal factor of the
intrinsic metric can be Dirichlet-type or Neumann-type.

Reduction of the DoF by the Petrov-like condition

C(`)i(`)j = `µ`νCµ iνj = 0, ` =
∂0−n√

2

on the boundary with n its unit normal.
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Lysov-Strominger’s basic ideas

The large mean curvature (or near horizon) expansion is taken
to obtain the non-relativistic fluid dynamics.

The Rindler case with Dirichlet-type boundary condition

ds2
d+1 =−rdt2 +2drdt +dx2 =⇒ ds2

d =−rcdt2 +dx2

ds2
d =−dτ2

λ2 +dx2, rc = λ 2 =⇒ τ = λ 2t

λ → 0 =⇒ K = 1
2λ
→ ∞

Express everything in terms of tτ
τ , tτ

i and t i
j .

Expand tτ
τ , tτ

i and t i
j in powers of λ , then the Petrov type I

condition gives the incompressible Navier-Stokes equations,
upon identifying tτ(1)

i = 1
2v i and t(1) = d−1

2 P .
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Our results

T. Huang, Y. Ling, W. Pan, Y. Tian and X. Wu, JHEP 1110
(2011) 079 [arXiv:1107.1464].
T. Huang, Y. Ling, W. Pan, Y. Tian and X. Wu, [arXiv:1111.1576].

Lysov-Strominger’s framework is refined/extended.

A case of (roughly) mixed boundary condition is illustrated.

Cases of intrinsically curved boundary are treated, with the
incompressible Navier-Stokes equations in curved space
obtained.

The interesting cases of dual fluid on the Schwarzschild(-AdS)
horizon and AdS black brane horizon are included.
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Key points for all cases

The expressions of the Wely tensor components:

Cabcd = dRabcd +KadKbc −KacKbd +
2Λ

p(p +1)
(γadγbc − γacγbd )

Cabnc = ∇bKac −∇aKbc

Cnanb = −dRab +KKab−KacK c
b +

2Λ

p +1
γac

∇ata
b = 0 =⇒{

Div i = 0 (b = τ)
∂τvi + vkDkvi +DiP−D2vi −Rk

i vk = 0 (b = i)

η = 1
16πG =⇒ η

s = 1
4π
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Thank you!
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